Abstract
Many of the proposed applications of metalâorganic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the âtime gapâ in the literature â that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Horike, S., Umeyama, D. & Kitagawa, S. Ion conductivity and transport by porous coordination polymers and metalâorganic frameworks. Acc. Chem. Res. 46, 2376â2384 (2013).
Bhardwaj, S. K. et al. An overview of different strategies to introduce conductivity in metalâorganic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 6, 14992â15009 (2018).
Heinke, L. Diffusion and photoswitching in nanoporous thin films of metal-organic frameworks. J. Phys. D 50, 193004 (2017).
Rice, A. M. et al. Photophysics modulation in photoswitchable metalâorganic frameworks. Chem. Rev. 120, 8790â8813 (2020).
Dolgopolova, E. A., Rice, A. M., Martin, C. R. & Shustova, N. B. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 47, 4710â4728 (2018).
Mazaj, M., Kaucic, V. & Logar, N. Z. Chemistry of metalâorganic frameworks monitored by advanced X-ray diffraction and scattering techniques. Acta Chim. Slovenica 63, 440â458 (2016).
Lee, J. H., Jeoung, S., Chung, Y. G. & Moon, H. R. Elucidation of flexible metalâorganic frameworks: research progresses and recent developments. Coord. Chem. Rev. 389, 161â188 (2019).
Hanna, L. & Lockard, J. V. From IR to X-rays: gaining molecular level insights on metalâorganic frameworks through spectroscopy. J. Phys. Condens. Matter 31, 483001 (2019).
Bon, V., Brunner, E., Poppl, A. & Kaskel, S. Unraveling structure and dynamics in porous frameworks via advanced in situ characterization techniques. Adv. Funct. Mater. 30, 1907847 (2020).
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B 72, 171â179 (2016).
Tansell, A. J., Jones, C. L. & Easun, T. L. MOF the beaten track: unusual structures and uncommon applications of metalâorganic frameworks. Chem. Cent. J. 11, 100 (2017).
Easun, T. L. & Nevin, A. C. in Organometallic Chemistry Vol. 42 (eds Patmore, N. J. & Elliott, P. I. P.) 54â79 (The Royal Society of Chemistry, 2019).
Easun, T. L., Moreau, F., Yan, Y., Yang, S. & Schröder, M. Structural and dynamic studies of substrate binding in porous metalâorganic frameworks. Chem. Soc. Rev. 46, 239â274 (2017).
Lin, R. B., Xiang, S. C., Xing, H. B., Zhou, W. & Chen, B. L. Exploration of porous metalâorganic frameworks for gas separation and purification. Coord. Chem. Rev. 378, 87â103 (2019).
Kang, Z. X., Fan, L. L. & Sun, D. F. Recent advances and challenges of metalâorganic framework membranes for gas separation. J. Mater. Chem. A 5, 10073â10091 (2017).
Ma, S. Q. & Zhou, H. C. Gas storage in porous metalâorganic frameworks for clean energy applications. Chem. Commun. 46, 44â53 (2010).
Dhakshinamoorthy, A., Asiri, A. M. & Garcia, H. Metalâorganic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew. Chem. Int. Ed. 55, 5414â5445 (2016).
Zhang, T. & Lin, W. B. Metalâorganic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982â5993 (2014).
Sun, Y. J. et al. Metalâorganic framework nanocarriers for drug delivery in biomedical applications. Nanomicro Lett. 12, 103 (2020).
Lazaro, I. A. & Forgan, R. S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 380, 230â259 (2019).
Horcajada, P. et al. Metalâorganic frameworks in biomedicine. Chem. Rev. 112, 1232â1268 (2012).
Wang, L., Zheng, M. & Xie, Z. G. Nanoscale metalâorganic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B 6, 707â717 (2018).
Lustig, W. P. et al. Metalâorganic frameworks: functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 46, 3242â3285 (2017).
Osman, D. I. et al. Nucleic acids biosensors based on metalâorganic framework (MOF): paving the way to clinical laboratory diagnosis. Biosens. Bioelectron. 141, 111451 (2019).
Koo, W. T., Jang, J. S. & Kim, I. D. Metalâorganic frameworks for chemiresistive sensors. Sens. Chem. 5, 1938â1963 (2019).
Wen, X. D., Zhang, Q. Q. & Guan, J. Q. Applications of metalâorganic framework-derived materials in fuel cells and metalâair batteries. Coord. Chem. Rev. 409, 21321 (2020).
Yang, L., Zeng, X. F., Wang, W. C. & Cao, D. P. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells. Adv. Funct. Mater. 28, 17045 (2018).
Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695â704 (2009).
Boutin, A. et al. Temperature-induced structural transitions in the gallium-based MIL-53 metalâorganic framework. J. Phys. Chem. C 117, 8180â8188 (2013).
Spencer, E. C. et al. Pressure-induced bond rearrangement and reversible phase transformation in a metalâorganic framework. Angew. Chem. Int. Ed. 53, 5583â5586 (2014).
Allendorf, M. D. et al. Guest-induced emergent properties in metal-organic frameworks. J. Phys. Chem. Lett. 6, 1182â1195 (2015).
Jones, C. L., Tansell, A. J. & Easun, T. L. The lighter side of MOFs: structurally photoresponsive metal-organic frameworks. J. Mater. Chem. A 4, 6714â6723 (2016).
Ehrling, S., Miura, H., Senkovska, I. & Kaskel, S. From macro- to nanoscale: finite size effects on metal-organic framework switchability. Trends Chem. 3, 291â304 (2021).
Fraux, G. & Coudert, F. X. Recent advances in the computational chemistry of soft porous crystals. Chem. Commun. 53, 7211â7221 (2017).
Goeminne, R., Krause, S., Kaskel, S., Verstraelen, T. & Evans, J. D. Charting the complete thermodynamic landscape of gas adsorption for a responsive metalâorganic framework. J. Am. Chem. Soc. 143, 4143â4147 (2021).
Tiba, A., Tivanski, A. V. & MacGillivray, L. R. Size-dependent mechanical properties of a metal-organic framework: increase in flexibility of ZIF-8 by crystal downsizing. Nano Lett. 19, 6140â6143 (2019).
Krause, S. et al. The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metalâorganic framework DUT-98. Beilstein J. Nanotechnol. 10, 1737â1744 (2019).
Evans, J. D., Bon, V., Senkovska, I., Lee, H. C. & Kaskel, S. Four-dimensional metalâorganic frameworks. Nat. Commun. 11, 2690 (2020).
Laybourn, A. et al. Metalâorganic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 5, 7333â7338 (2017).
Stock, N. & Biswas, S. Synthesis of metalâorganic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933â969 (2012).
Marshall, C. R., Staudhammer, S. A. & Brozek, C. K. Size control over metalâorganic framework porous nanocrystals. Chem. Sci. 10, 9396â9408 (2019).
Shearer, G. C. et al. Defect engineering: tuning the porosity and composition of the metalâorganic framework UiO-66 via modulated synthesis. Chem. Mater. 28, 3749â3761 (2016).
Kang, X. C. et al. Integration of mesopores and crystal defects in metalâorganic frameworks via templated electrosynthesis. Nat. Commun. 10, 4466 (2019).
Fang, Z. L., Bueken, B., De Vos, D. E. & Fischer, R. A. Defect-engineered metalâorganic frameworks. Angew. Chem. Int. Ed. 54, 7234â7254 (2015).
Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F. X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11â16 (2017).
Zacher, D., Schmid, R., Woll, C. & Fischer, R. A. Surface chemistry of metalâorganic frameworks at the liquidâsolid interface. Angew. Chem. Int. Ed. 50, 176â199 (2011).
Seetharaj, R., Vandana, P. V., Arya, P. & Mathew, S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arab. J. Chem. 12, 295â315 (2019).
Asghar, A. et al. Efficient electrochemical synthesis of a manganese-based metalâorganic framework for H2 and CO2 uptake. Green Chem. 23, 1220â1227 (2021).
Asghar, A., Iqbal, N., Noor, T., Ali, M. & Easun, T. L. Efficient one-pot synthesis of a hexamethylenetetramine-doped Cu-BDC metalâorganic framework with enhanced CO2 adsorption. Nanomaterials 9, 1063 (2019).
Asghar, A. et al. Ethylenediamine loading into a manganese-based metalâorganic framework enhances water stability and carbon dioxide uptake of the framework. R. Soc. Open Sci. 7, 191934 (2020).
Van Vleet, M. J., Weng, T. T., Li, X. Y. & Schmidt, J. R. In situ, time-resolved, and mechanistic studies of metalâorganic framework nucleation and growth. Chem. Rev. 118, 3681â3721 (2018).
Khawam, A. & Flanagan, D. R. Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315â17328 (2006).
Davies, A. T., Sankar, G., Catlow, C. R. A. & Clark, S. M. Following the crystallization of microporous solids using EDXRD techniques. J. Phys. Chem. B 101, 10115â10120 (1997).
Muncaster, G. et al. On the advantages of the use of the three-element detector system for measuring EDXRD patterns to follow the crystallisation of open-framework structures. Phys. Chem. Chem. Phys. 2, 3523â3527 (2000).
Wu, Y. et al. Time-resolved in situ X-ray diffraction reveals metal-dependent metal-organic framework formation. Angew. Chem. Int. Ed. 55, 14081â14084 (2016).
Wu, Y., Moorhouse, S. J. & OâHare, D. Time-resolved in situ diffraction reveals a solid-state rearrangement during solvothermal MOF synthesis. Chem. Mater. 27, 7236â7239 (2015).
Wu, Y., Breeze, M. I., OâHare, D. & Walton, R. I. High energy X-rays for following metalâorganic framework formation: identifying intermediates in interpenetrated MOF-5 crystallisation. Microporous Mesoporous Mater. 254, 178â183 (2017).
Ragon, F. et al. In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66. Inorg. Chem. 53, 2491â2500 (2014).
Ragon, F., Chevreau, H., Devic, T., Serre, C. & Horcajada, P. Impact of the nature of the organic spacer on the crystallization kinetics of UiO-66(Zr)-type MOFs. Chem. Eur. J. 21, 7135â7143 (2015).
Wells, S. A., Cessford, N. F., Seaton, N. A. & Duren, T. Early stages of phase selection in MOF formation observed in molecular Monte Carlo simulations. RSC Adv. 9, 14382â14390 (2019).
Mazaj, M. & Logar, N. Z. Phase formation study of Ca-terephthalate MOF-type materials. Cryst. Growth Des. 15, 617â624 (2015).
Zheng, C. M., Greer, H. F., Chianga, C. Y. & Zhou, W. Z. Microstructural study of the formation mechanism of metalâorganic framework MOF-5. CrystEngComm 16, 1064â1070 (2014).
Yeung, H. H. M. et al. In situ observation of successive crystallizations and metastable intermediates in the formation of metalâorganic frameworks. Angew. Chem. Int. Ed. 55, 2012â2016 (2016).
Yeung, H. H. M. et al. Control of metalâorganic framework crystallization by metastable intermediate pre-equilibrium species. Angew. Chem. Int. Ed. 58, 566â571 (2019).
Boldon, L., Laliberte, F. & Liu, L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. 6, 25661 (2015).
Narayanan, T. et al. A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering. J. Appl. Crystallogr. 51, 1511â1524 (2018).
Carraro, F. et al. Continuous-flow synthesis of ZIF-8 biocomposites with tunable particle size. Angew. Chem. Int. Ed. 59, 8123â8127 (2020).
Cravillon, J. et al. Fast nucleation and growth of ZIF-8 nanocrystals monitored by time-resolved in situ small-angle and wide-angle X-ray scattering. Angew. Chem. Int. Ed. 50, 8067â8071 (2011).
Stavitski, E. et al. Kinetic control of metalâorganic framework crystallization investigated by time-resolved in situ X-ray scattering. Angew. Chem. Int. Ed. 50, 9624â9628 (2011).
Saha, S. et al. Insight into fast nucleation and growth of zeolitic imidazolate framework-71 by in situ time-resolved light and X-ray scattering experiments. Cryst. Growth Des. 16, 2002â2010 (2016).
Chen, D., Zhao, J., Zhang, P. & Dai, S. Mechanochemical synthesis of metalâorganic frameworks. Polyhedron 162, 59â64 (2019).
Stolar, T. & UžareviÄ, K. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metalâorganic frameworks. CrystEngComm 22, 4511â4525 (2020).
Julien, P. A. et al. In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. J. Am. Chem. Soc. 138, 2929â2932 (2016).
Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metalâorganic framework. Nat. Commun. 6, 6662 (2015).
Holder, C. F. & Schaak, R. E. Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano 13, 7359â7365 (2019).
Holton, J. M. & Frankel, K. A. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. D 66, 393â408 (2010).
Joy, D. C. The theory and practice of high-resolution scanning electron microscopy. Ultramicroscopy 37, 216â233 (1991).
Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110â1114 (2009).
Xing, J. F., Schweighauser, L., Okada, S., Harano, K. & Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 10, 3608 (2019).
Hermes, S. et al. Trapping metalâorganic framework nanocrystals: an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 129, 5324â5325 (2007).
Patterson, J. P. et al. Observing the growth of metalâorganic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 137, 7322â7328 (2015).
Moh, P. Y., Cubillas, P., Anderson, M. W. & Attfield, M. P. Revelation of the molecular assembly of the nanoporous metal organic framework ZIF-8. J. Am. Chem. Soc. 133, 13304â13307 (2011).
Mandemaker, L. D. B. et al. Time-resolved in situ liquid-phase atomic force microscopy and infrared nanospectroscopy during the formation of metalâorganic framework thin films. J. Phys. Chem. Lett. 9, 1838â1844 (2018).
Falke, S. & Betzel, C. in Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods (eds Pereira, A. S., Tavares, P. & Limão-Vieira, P.) 173â193 (Springer, 2019).
van der Veen, M. A., Verbiest, T. & De Vos, D. E. Probing microporous materials with second-harmonic generation. Microporous Mesoporous Mater. 166, 102â108 (2013).
Van Cleuvenbergen, S. et al. Morphology and structure of ZIF-8 during crystallisation measured by dynamic angle-resolved second harmonic scattering. Nat. Commun. 9, 3418 (2018).
Nikitenko, S. et al. Implementation of a combined SAXS/WAXS/QEXAFS set-up for time-resolved in situ experiments. J. Synchrotron Radiat. 15, 632â640 (2008).
Goesten, M. et al. The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. Chem. Eur. J. 19, 7809â7816 (2013).
Hughes, C. E., Williams, P. A. & Harris, K. D. M. âCLASSIC NMRâ: an in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angew. Chem. Int. Ed. 53, 8939â8943 (2014).
Jones, C. L. et al. Exploiting in situ NMR to monitor the formation of a metalâorganic framework. Chem. Sci. 12, 1486â1494 (2021).
Zhao, J. J., Kalanyan, B., Barton, H. F., Sperling, B. A. & Parsons, G. N. In situ time-resolved attenuated total reflectance infrared spectroscopy for probing metalâorganic framework thin film growth. Chem. Mater. 29, 8804â8810 (2017).
Embrechts, H. et al. Elucidation of the formation mechanism of metalâorganic frameworks via in-situ Raman and FTIR spectroscopy under solvothermal conditions. J. Phys. Chem. C. 122, 12267â12278 (2018).
Embrechts, H. et al. In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68(Al) and MIL-53(Al). RSC Adv. 10, 7336â7348 (2020).
Li, H. et al. Recent advances in gas storage and separation using metalâorganic frameworks. Mater. Today 21, 108â121 (2018).
Cai, W. et al. Metalâorganic framework-based stimuli-responsive systems for drug delivery. Adv. Sci. 6, 1801526 (2019).
Xie, L. S., Skorupskii, G. & Dinca, M. Electrically conductive metalâorganic frameworks. Chem. Rev. 120, 8536â8580 (2020).
Escorihuela, J., Narducci, R., Compan, V. & Costantino, F. Proton conductivity of composite polyelectrolyte membranes with metalâorganic frameworks for fuel cell applications. Adv. Mater. Interfaces 6, 1801146 (2019).
Johnson, C. S. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 34, 203â256 (1999).
Stallmach, F. & Karger, J. The potentials of pulsed field gradient NMR for investigation of porous media. Adsorption 5, 117â133 (1999).
Price, W. S. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion.1. Basic theory. Concepts Magn. Reson. 9, 299â336 (1997).
Chmelik, C., Freude, D., Bux, H. & Haase, J. Ethene/ethane mixture diffusion in the MOF sieve ZIF-8 studied by MAS PFG NMR diffusometry. Microporous Mesoporous Mater. 147, 135â141 (2012).
Kundu, A., Sillar, K. & Sauer, J. Predicting adsorption selectivities from pure gas isotherms for gas mixtures in metalâorganic frameworks. Chem. Sci. 11, 643â655 (2020).
Freude, D. et al. NMR study of the host structure and guest dynamics investigated with alkane/alkene mixtures in metal organic frameworks ZIF-8. J. Phys. Chem. C. 123, 1904â1912 (2019).
Dvoyashkina, N. et al. Alkane/alkene mixture diffusion in silicalite-1 studied by MAS PFG NMR. Microporous Mesoporous Mater. 257, 128â134 (2018).
Forman, E. M. et al. Ethylene diffusion in crystals of zeolitic imidazole Framework-11 embedded in polymers to form mixed-matrix membranes. Microporous Mesoporous Mater. 274, 163â170 (2019).
Forse, A. C. et al. Unexpected diffusion anisotropy of carbon dioxide in the metalâorganic framework Zn2(dobpdc). J. Am. Chem. Soc. 140, 1663â1673 (2018).
Popp, T. M. O., Plantz, A. Z., Yaghi, O. M. & Reimer, J. A. Precise control of molecular self-diffusion in isoreticular and multivariate metalâorganic frameworks. ChemPhysChem 21, 32â35 (2020).
Walenszus, F., Bon, V., Evans, J. D., Kaskel, S. & Dvoyashkin, M. Molecular diffusion in a flexible mesoporous metalâorganic framework over the course of structural contraction. J. Phys. Chem. Lett. 11, 9696â9701 (2020).
Tan, K. & Chabal, Y. J. in MetalâOrganic Frameworks Ch. 2 (eds Zafar, F. & Sharmin, E.) (IntechOpen, 2016).
Drenchev, N. L. et al. In situ FTIR spectroscopy as a tool for investigation of gas/solid interaction: water-enhanced CO2 adsorption in UiO-66 metal-organic framework. Jove 156, e60285 (2020).
Musto, P., Ragosta, G. & Mensitieri, G. Time-resolved FTIR/FTNIR spectroscopy: powerful tools to investigate diffusion processes in polymeric films and membranes. e-Polym. 2, 16 (2002).
Karge, H. G. Infrared spectroscopic investigation of diffusion, co-diffusion and counter-diffusion of hydrocarbon molecules in zeolites. C. R. Chim. 8, 303â319 (2005).
Karimi, M., Tashvigh, A. A., Asadi, F. & Ashtiani, F. Z. Determination of concentration-dependent diffusion coefficient of seven solvents in polystyrene systems using FTIR-ATR technique: experimental and mathematical studies. RSC Adv. 6, 9013â9022 (2016).
Sharp, C. H. et al. Alkane-OH hydrogen bond formation and diffusion energetics of n-butane within UiO-66. J. Phys. Chem. C 121, 8902â8906 (2017).
Grissom, T. G. et al. Benzene, toluene, and xylene transport through UiO-66: diffusion rates, energetics, and the role of hydrogen bonding. J. Phys. Chem. C 122, 16060â16069 (2018).
Embs, J. P., Juranyi, F. & Hempelmann, R. Introduction to quasielastic neutron scattering. Z. Phys. Chem. 224, 5â32 (2010).
Bee, M. Localized and long-range diffusion in condensed matter: state of the art of QENS studies and future prospects. Chem. Phys. 292, 121â141 (2003).
Kolokolov, D. I. et al. Diffusion of benzene in the breathing metal-organic framework MIL-53(Cr): a joint experimental-computational investigation. J. Phys. Chem. C 119, 8217â8225 (2015).
Rosenbach, N. et al. Quasi-elastic neutron scattering and molecular dynamics study of methane diffusion in metal organic frameworks MIL-47(V) and MIL-53(Cr). Angew. Chem. Int. Ed. 47, 6611â6615 (2008).
Yang, Q. Y. et al. Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66(Zr): a joint experimental and modeling approach. J. Phys. Chem. C 115, 13768â13774 (2011).
Krishna, R. & van Baten, J. M. Insights into diffusion of gases in zeolites gained from molecular dynamics simulations. Microporous Mesoporous Mater. 109, 91â108 (2008).
Forman, E. M., Pimentel, B. R., Ziegler, K. J., Lively, R. P. & Vasenkov, S. Microscopic diffusion of pure and mixed methane and carbon dioxide in ZIF-11 by high field diffusion NMR. Microporous Mesoporous Mater. 248, 158â163 (2017).
Ghoufi, A. & Maurin, G. Single-file diffusion of neo-pentane confined in the MIL-47(V) metal-organic framework. J. Phys. Chem. C 123, 17360â17367 (2019).
Kärger, J., Heinke, L., Kortunov, P. & Vasenkov, S. in Studies in Surface Science and Catalysis Vol. 170 (eds Xu, R., Gao, Z., Chen, J. & Yan, W.) 739â747 (Elsevier, 2007).
Schemmert, U., Karger, J. & Weitkamp, J. Interference microscopy as a technique for directly measuring intracrystalline transport diffusion in zeolites. Microporous Mesoporous Mater. 32, 101â110 (1999).
Heinke, L., Kortunov, P., Tzoulaki, D. & Karger, J. The options of interference microscopy to explore the significance of intracrystalline diffusion and surface permeation for overall mass transfer on nanoporous materials. Adsorption 13, 215â223 (2007).
Karger, J. & Ruthven, D. M. Diffusion in nanoporous materials: fundamental principles, insights and challenges. N. J. Chem. 40, 4027â4048 (2016).
Chmelik, C., Glaser, R., Haase, J., Hwang, S. & Karger, J. Application of microimaging to diffusion studies in nanoporous materials. Adsorption 27, 819â840 (2020).
Heinke, L. et al. Three-dimensional diffusion in nanoporous host-guest materials monitored by interference microscopy. EPL 81, 26002 (2008).
Kortunov, P. V. et al. Intracrystalline diffusivities and surface permeabilities deduced from transient concentration profiles: methanol in MOF manganese formate. J. Am. Chem. Soc. 129, 8041â8047 (2007).
Briggs, L. et al. Binding and separation of CO2, SO2 and C2H2 in homo- and hetero-metallic metalâorganic framework materials. J. Mater. Chem. A 9, 7190â7197 (2021).
Krap, C. P. et al. Enhancement of CO2 adsorption and catalytic properties by Fe-doping of [Ga2(OH)2(L)] (H4L = biphenyl-3,3â²,5,5â²-tetracarboxylic acid), MFM-300(Ga2). Inorg. Chem. 55, 1076â1088 (2016).
Savage, M. et al. Selective adsorption of sulfur dioxide in a robust metalâorganic framework material. Adv. Mater. 28, 8705â8711 (2016).
Smith, G. L. et al. Reversible coordinative binding and separation of sulfur dioxide in a robust metalâorganic framework with open copper sites. Nat. Mater. 18, 1358â1365 (2019).
Greenaway, A. et al. In situ synchrotron IR microspectroscopy of CO2 adsorption on single crystals of the functionalized MOF Sc2(BDC-NH2)3. Angew. Chem. Int. Ed. 53, 13483â13487 (2014).
Godfrey, H. G. W. et al. Ammonia storage by reversible hostâguest site exchange in a robust metalâorganic framework. Angew. Chem. Int. Ed. 57, 14778â14781 (2018).
Humby, J. D. et al. Hostâguest selectivity in a series of isoreticular metalâorganic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions. Chem. Sci. 10, 1098â1106 (2019).
Souza, B. E. et al. Elucidating the drug release from metal-organic framework nanocomposites via in situ synchrotron microspectroscopy and theoretical modeling. ACS Appl. Mater. Interfaces 12, 5147â5156 (2020).
Bux, H., Chmelik, C., Krishna, R. & Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion. J. Membr. Sci. 369, 284â289 (2011).
Baniani, A. et al. Anomalous relationship between molecular size and diffusivity of ethane and ethylene inside crystals of zeolitic imidazolate framework-11. J. Phys. Chem. C 123, 16813â16822 (2019).
Berens, S. et al. Ethane diffusion in mixed linker zeolitic imidazolate framework-7-8 by pulsed field gradient NMR in combination with single crystal IR microscopy. Phys. Chem. Chem. Phys. 20, 23967â23975 (2018).
Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 155, 206â222 (1959).
Czanderna, A. W. & Lu, C. in Methods and Phenomena Vol. 7 (eds Lu, C. & Czanderna, A. W.) 1â18 (Elsevier, 1984).
Kanazawa, K. & Cho, N.-J. Quartz crystal microbalance as a sensor to characterize macromolecular assembly dynamics. J. Sens. 2009, 824947 (2009).
Tuantranont, A., Wisitsora-at, A., Sritongkham, P. & Jaruwongrungsee, K. A review of monolithic multichannel quartz crystal microbalance: a review. Anal. Chim. Acta 687, 114â128 (2011).
OâSullivan, C. K. & Guilbault, G. G. Commercial quartz crystal microbalances â theory and applications. Biosens. Bioelectron. 14, 663â670 (1999).
Wang, L. Y. Metal-organic frameworks for QCM-based gas sensors: a review. Sens. Actuator A Phys. 307, 111984 (2020).
Zybaylo, O. et al. A novel method to measure diffusion coefficients in porous metal-organic frameworks. Phys. Chem. Chem. Phys. 12, 8092â8097 (2010).
Heinke, L., Gu, Z. G. & Woll, C. The surface barrier phenomenon at the loading of metalâorganic frameworks. Nat. Commun. 5, 4562 (2014).
Zhou, W. C., Woell, C. & Heinke, L. Liquid- and gas-phase diffusion of ferrocene in thin films of metal-organic frameworks. Materials 8, 3767â3775 (2015).
Heinke, L. & Woll, C. Adsorption and diffusion in thin films of nanoporous metal-organic frameworks: ferrocene in SURMOF Cu2(ndc)2(dabco). Phys. Chem. Chem. Phys. 15, 9295â9299 (2013).
Muller, K., Vankova, N., Schottner, L., Heine, T. & Heinke, L. Dissolving uptake-hindering surface defects in metal-organic frameworks. Chem. Sci. 10, 153â160 (2019).
Ramaswamy, P., Wong, N. E. & Shimizu, G. K. H. MOFs as proton conductors â challenges and opportunities. Chem. Soc. Rev. 43, 5913â5932 (2014).
Lim, D. W. & Kitagawa, H. Proton transport in metalâorganic frameworks. Chem. Rev. 120, 8416â8467 (2020).
Sadakiyo, M., Yamada, T. & Kitagawa, H. Rational designs for highly proton-conductive metalâorganic frameworks. J. Am. Chem. Soc. 131, 9906â9907 (2009).
Macdonald, J. R. Impedance spectroscopy. Ann. Biomed. Eng. 20, 289â305 (1992).
Lee, Y. J., Murakhtina, T., Sebastiani, D. & Spiess, H. W. 2H solid-state NMR of mobile protons: it is not always the simple way. J. Am. Chem. Soc. 129, 12406â12407 (2007).
Vilciauskas, L., Tuckerman, M. E., Bester, G., Paddison, S. J. & Kreuer, K. D. The mechanism of proton conduction in phosphoric acid. Nat. Chem. 4, 461â466 (2012).
Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 244, 456â462 (1995).
Kreuer, K. D., Rabenau, A. & Weppner, W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem. Int. Ed. Engl. 21, 208â209 (1982).
Pili, S. et al. Proton conduction in a phosphonate-based metal-organic framework mediated by intrinsic âfree diffusion inside a sphereâ. J. Am. Chem. Soc. 138, 6352â6355 (2016).
Rought, P. et al. Modulating proton diffusion and conductivity in metalâorganic frameworks by incorporation of accessible free carboxylic acid groups. Chem. Sci. 10, 1492â1499 (2019).
Liu, Q. Y. et al. Metal organic frameworks modified proton exchange membranes for fuel cells. Front. Chem. 8, 694 (2020).
Kang, D. W., Kang, M. & Hong, C. S. Post-synthetic modification of porous materials: superprotonic conductivities and membrane applications in fuel cells. J. Mater. Chem. A 8, 7474â7494 (2020).
Liang, X. et al. Potential applications of metal organic framework-based materials for proton exchange membrane fuel cells. Prog. Chem. 30, 1770â1783 (2018).
Baumann, A. E., Burns, D. A., Liu, B. Q. & Thoi, V. S. Metalâorganic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2, 86 (2019).
Choi, K. M. et al. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano 8, 7451â7457 (2014).
Liang, H. Q. et al. A light-responsive metal-organic framework hybrid membrane with high on/off photoswitchable proton conductivity. Angew. Chem. Int. Ed. 59, 7732â7737 (2020).
Kanj, A. B. et al. Proton-conduction photomodulation in spiropyran-functionalized MOFs with large on-off ratio. Chem. Sci. 11, 1404â1410 (2020).
Liang, H. Q., Guo, Y., Peng, X. S. & Chen, B. L. Light-gated cation-selective transport in metal-organic framework membranes. J. Mater. Chem. A 8, 11399â11405 (2020).
Muller, K. et al. Switching the proton conduction in nanoporous, crystalline materials by light. Adv. Mater. 30, 1706551 (2018).
Song, Y. et al. Transformation of a proton insulator to a conductor via reversible amorphous to crystalline structure transformation of MOFs. Chem. Commun. 56, 4468â4471 (2020).
Wei, Y. S. et al. Unique proton dynamics in an efficient MOF-based proton conductor. J. Am. Chem. Soc. 139, 3505â3512 (2017).
Shen, L. et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metalâorganic frameworks. Adv. Mater. 30, 1707476 (2018).
Fujie, K., Yamada, T., Ikeda, R. & Kitagawa, H. Introduction of an ionic liquid into the micropores of a metalâorganic framework and its anomalous phase behavior. Angew. Chem. Int. Ed. 53, 11302â11305 (2014).
Kinik, F. P., Uzun, A. & Keskin, S. Ionic liquid/metalâorganic framework composites: from synthesis to applications. ChemSusChem 10, 2842â2863 (2017).
Kanj, A. B. et al. Bunching and immobilization of ionic liquids in nanoporous metalâorganic framework. Nano Lett. 19, 2114â2120 (2019).
Wang, H. F., Chen, L. Y., Pang, H., Kaskel, S. & Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414â1448 (2020).
Cheng, W. R. et al. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 5, 346â347 (2020).
Yan, Z. H. et al. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metalâorganic framework. Nat. Commun. 9, 3353 (2018).
Xia, B. Y. et al. A metalâorganic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016).
Zhao, Y. et al. Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2, 35â62 (2016).
Wang, L. et al. Metalâorganic frameworks for energy storage: batteries and supercapacitors. Coord. Chem. Rev. 307, 361â381 (2016).
Feng, D. W. et al. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance. Nat. Energy 3, 30â36 (2018).
Sheberla, D. et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220â224 (2017).
Deng, R., Han, W. & Yeung, K. L. Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catal. Today 331, 12â17 (2019).
Cai, K. et al. An acid-stable hexaphosphate ester based metal-organic framework and its polymer composite as proton exchange membrane. J. Mater. Chem. A 5, 12943â12950 (2017).
Anahidzade, N., Abdolmaleki, A., Dinari, M., Tadavani, K. F. & Zhiani, M. Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells. J. Membr. Sci. 565, 281â292 (2018).
Murase, R., Ding, B. W., Gu, Q. Y. & DâAlessandro, D. M. Prospects for electroactive and conducting framework materials. Phil. Trans. R. Soc. A 377, 20180226 (2019).
Chueh, C. C. et al. Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7, 17079â17095 (2019).
Heidary, N., Harris, T., Ly, K. H. & Kornienko, N. Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): challenges and prospects in fuel-forming electrocatalysis. Physiol. Plant. 166, 460â471 (2019).
Khitrova, G., Berman, P. R. & Sargent, M. Theory of pump probe spectroscopy. J. Opt. Soc. Am. B 5, 160â170 (1988).
Lytle, F. E., Parrish, R. M. & Barnes, W. T. An introduction to time-resolved pump/probe spectroscopy. Appl. Spectrosc. 39, 444â451 (1985).
Tromp, M. et al. Energy dispersive XAFS: characterization of electronically excited states of copper(I) complexes. J. Phys. Chem. B 117, 7381â7387 (2013).
Easun, T. L. et al. Photochemistry in a 3D metal-organic framework (MOF): monitoring intermediates and reactivity of the fac-to-mer photoisomerization of Re(diimine)(CO)3Cl incorporated in a MOF. Inorg. Chem. 53, 2606â2612 (2014).
Blake, A. J. et al. Photoreactivity examined through incorporation in metalâorganic frameworks. Nat. Chem. 2, 688â694 (2010).
Easun, T. L. et al. Modification of coordination networks through a photoinduced charge transfer process. Chem. Sci. 5, 539â544 (2014).
Pattengale, B. et al. Exceptionally long-lived charge separated state in zeolitic imidazolate framework: implication for photocatalytic applications. J. Am. Chem. Soc. 138, 8072â8075 (2016).
Pattengale, B. et al. Metalâorganic framework photoconductivity via time-resolved terahertz spectroscopy. J. Am. Chem. Soc. 141, 9793â9797 (2019).
Hanna, L., Kucheryavy, P., Liu, C. M., Zhang, X. Y. & Lockard, J. V. Long-lived photoinduced charge separation in a trinuclear iron-μ3-oxo-based metalâorganic framework. J. Phys. Chem. C 121, 13570â13576 (2017).
Yu, J. R., Park, J., Van Wyk, A., Rumbles, G. & Deria, P. Excited-state electronic properties in Zr-based metal-organic frameworks as a function of a topological network. J. Am. Chem. Soc. 140, 10488â10496 (2018).
Li, X. X. et al. Ultrafast relaxation dynamics in zinc tetraphenylporphyrin surface-mounted metal organic framework. J. Phys. Chem. C 122, 50â61 (2018).
Rodriguez, A. M. B. et al. Ligand-to-diimine/metal-to-diimine charge-transfer excited states of Re(NCS)(CO)3(α-diimine) (α-diimine = 2,2â²-bipyridine, di-iPr-N,N-1,4-diazabutadiene). A spectroscopic and computational study. J. Phys. Chem. A 109, 5016â5025 (2005).
Mitra, T. et al. Characterisation of redox states of metalâorganic frameworks by growth on modified thin-film electrodes. Chem. Sci. 9, 6572â6579 (2018).
Hua, C. et al. Through-space intervalence charge transfer as a mechanism for charge delocalization in metal-organic frameworks. J. Am. Chem. Soc. 140, 6622â6630 (2018).
Ding, B. W., Hua, C., Kepert, C. J. & DâAlessandro, D. M. Influence of structure-activity relationships on through-space intervalence charge transfer in metalâorganic frameworks with cofacial redox-active units. Chem. Sci. 10, 1392â1400 (2019).
Usov, P. M. et al. Probing charge transfer characteristics in a donor-acceptor metal-organic framework by Raman spectroelectrochemistry and pressure-dependence studies. Phys. Chem. Chem. Phys. 20, 25772â25779 (2018).
Garg, S. et al. Conductance photoswitching of metalâorganic frameworks with embedded spiropyran. Angew. Chem. Int. Ed. 58, 1193â1197 (2019).
Yu, F. et al. Photostimulus-responsive large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 58, 16101â16104 (2019).
Sun, L., Park, S. S., Sheberla, D. & Dinca, M. Measuring and reporting electrical conductivity in metal organic frameworks: Cd2(TTFTB) as a case study. J. Am. Chem. Soc. 138, 14772â14782 (2016).
Narayan, T. C., Miyakai, T., Seki, S. & Dinca, M. High charge mobility in a tetrathiafulvalene-based microporous metalâorganic framework. J. Am. Chem. Soc. 134, 12932â12935 (2012).
Aubrey, M. L. et al. Electron delocalization and charge mobility as a function of reduction in a metalâorganic framework. Nat. Mater. 17, 625â632 (2018).
Dong, R. et al. High-mobility band-like charge transport in a semiconducting two-dimensional metalâorganic framework. Nat. Mater. 17, 1027â1032 (2018).
Cai, M., Loague, Q. & Morris, A. J. Design rules for efficient charge transfer in metalâorganic framework films: the pore size effect. J. Phys. Chem. Lett. 11, 702â709 (2020).
Halder, A. & Ghoshal, D. Structure and properties of dynamic metal-organic frameworks: a brief accounts of crystalline-to-crystalline and crystalline-to-amorphous transformations. CrystEngComm 20, 1322â1345 (2018).
Jiang, J. W. Concluding remarks: cooperative phenomena in framework materials. Faraday Discuss. 225, 442â454 (2021).
Schneemann, A. et al. Flexible metalâorganic frameworks. Chem. Soc. Rev. 43, 6062â6096 (2014).
Krause, S., Hosono, N. & Kitagawa, S. Chemistry of soft porous crystals: structural dynamics and gas adsorption properties. Angew. Chem. Int. Ed. 59, 15325â15341 (2020).
Alhamami, M., Doan, H. & Cheng, C. H. A review on breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption. Materials 7, 3198â3250 (2014).
Hyun, S. M. et al. Exploration of gate-opening and breathing phenomena in a tailored flexible metalâorganic framework. Inorg. Chem. 55, 1920â1925 (2016).
Chang, Z., Yang, D. H., Xu, J., Hu, T. L. & Bu, X. H. Flexible metalâorganic frameworks: recent advances and potential applications. Adv. Mater. 27, 5432â5441 (2015).
Burtch, N. C. et al. In situ visualization of loading-dependent water effects in a stable metalâorganic framework. Nat. Chem. 12, 186â192 (2020).
Lo, S. H. et al. Rapid desolvation-triggered domino lattice rearrangement in a metalâorganic framework. Nat. Chem. 12, 90â97 (2020).
Krause, S. et al. Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nat. Commun. 10, 3632 (2019).
Krause, S. et al. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 9, 1573 (2018).
Carrington, E. J. et al. Solvent-switchable continuous-breathing behaviour in a diamondoid metalâorganic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 9, 882â889 (2017).
Serra-Crespo, P. et al. Experimental evidence of negative linear compressibility in the MIL-53 metalâorganic framework family. CrystEngComm 17, 276â280 (2015).
Li, W. et al. Negative linear compressibility of a metalâorganic framework. J. Am. Chem. Soc. 134, 11940â11943 (2012).
Zeng, Q. X., Wang, K., Qiao, Y. C., Li, X. D. & Zou, B. Negative linear compressibility due to layer sliding in a layered metalâorganic framework. J. Phys. Chem. Lett. 8, 1436â1441 (2017).
Cai, W. Z. & Katrusiak, A. Giant negative linear compression positively coupled to massive thermal expansion in a metalâorganic framework. Nat. Commun. 5, 4337 (2014).
Yousef, H. et al. Timepix3 as X-ray detector for time resolved synchrotron experiments. Nucl. Instrum. Methods Phys. Res. A 845, 639â643 (2017).
Poikela, T. et al. Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 9, C05013 (2014).
Castillo-Blas, C., Moreno, J. M., Romero-Muñiz, I. & Platero-Prats, A. E. Applications of pair distribution function analyses to the emerging field of non-ideal metalâorganic framework materials. Nanoscale 12, 15577â15587 (2020).
Mao, H. Y., Xu, J., Hu, Y., Huang, Y. N. & Song, Y. The effect of high external pressure on the structure and stability of MOF α-Mg3(HCOO)6 probed by in situ Raman and FT-IR spectroscopy. J. Mater. Chem. A 3, 11976â11984 (2015).
Ryder, M. R. et al. Tracking thermal-induced amorphization of a zeolitic imidazolate framework via synchrotron in situ far-infrared spectroscopy. Chem. Commun. 53, 7041â7044 (2017).
Nishida, J. et al. Structural dynamics inside a functionalized metalâorganic framework probed by ultrafast 2D IR spectroscopy. Proc. Natl Acad. Sci. USA 111, 18442â18447 (2014).
Nishida, J. & Fayer, M. D. Guest hydrogen bond dynamics and interactions in the metal-organic framework MIL-53(AI) measured with ultrafast infrared spectroscopy. J. Phys. Chem. C 121, 11880â11890 (2017).
Le Sueur, A. L., Horness, R. E. & Thielges, M. C. Applications of two-dimensional infrared spectroscopy. Analyst 140, 4336â4349 (2015).
Coudert, F.-X. Responsive metalâorganic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905â1916 (2015).
Castellanos, S., Kapteijn, F. & Gascon, J. Photoswitchable metal organic frameworks: turn on the lights and close the windows. CrystEngComm 18, 4006â4012 (2016).
Mutruc, D. et al. Modulating guest uptake in core-shell MOFs with visible light. Angew. Chem. Int. Ed. 58, 12862â12867 (2019).
Liu, C. Y., Jiang, Y. Z., Zhou, C., Caro, J. & Huang, A. S. Photo-switchable smart metal organic framework membranes with tunable and enhanced molecular sieving performance. J. Mater. Chem. A 6, 24949â24955 (2018).
Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).
Williams, D. E. et al. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc. 140, 7611â7622 (2018).
Hoffmann, H. C. et al. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metalâorganic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). J. Am. Chem. Soc. 133, 8681â8690 (2011).
Schaber, J. et al. In situ monitoring of unique switching transitions in the pressure amplifying flexible framework material DUT-49 by high-pressure 129Xe NMR spectroscopy. J. Phys. Chem. C 121, 5195â5200 (2017).
Kolbe, F. et al. High-pressure in situ Xe-129 NMR spectroscopy: insights into switching mechanisms of flexible metalâorganic frameworks isoreticular to DUT-49. Chem. Mater. 31, 6193â6201 (2019).
Bertmer, M. in Annual Reports on NMR Spectroscopy Vol. 101 (ed. Rahman, A.) 1â64 (2020).
Chen, W., Wu, Y. N. & Li, F. T. Hierarchical structure and molecular dynamics of metalâorganic framework as characterized by solid state NMR. J. Chem. 2016, 6510253 (2016).
Bernin, D. & Hedin, N. Perspectives on NMR studies of CO2 adsorption. Curr. Opin. Colloid Interface Sci. 33, 53â62 (2018).
Moreau, F. et al. Tailoring porosity and rotational dynamics in a series of octacarboxylate metalâorganic frameworks. Proc. Natl Acad. Sci. USA 114, 3056â3061 (2017).
Trenholme, W. J. F. et al. Selective gas uptake and rotational dynamics in a (3,24)-connected metalâorganic framework material. J. Am. Chem. Soc. 143, 3348â3358 (2021).
Sin, M. et al. In situ 13C NMR spectroscopy study of CO2/CH4 mixture adsorption by metalâorganic frameworks: does flexibility influence selectivity? Langmuir 35, 3162â3170 (2019).
Benson, O. et al. Amides do not always work: observation of guest binding in an amide-functionalized porous metalâorganic framework. J. Am. Chem. Soc. 138, 14828â14831 (2016).
Lu, Z. et al. Modulating supramolecular binding of carbon dioxide in a redox-active porous metalâorganic framework. Nat. Commun. 8, 14212 (2017).
Moreau, F. et al. Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metalâorganic framework. Nat. Commun. 8, 14085 (2017).
Zhou, W. & Yildirim, T. Lattice dynamics of metal-organic frameworks: neutron inelastic scattering and first-principles calculations. Phys. Rev. B 74, 18030 (2006).
Zhao, P. et al. Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure. Nat. Commun. 10, 999 (2019).
Auckett, J. E. et al. Continuous negative-to-positive tuning of thermal expansion achieved by controlled gas sorption in porous coordination frameworks. Nat. Commun. 9, 4873 (2018).
Gong, X. Y. et al. Insights into the structure and dynamics of metalâorganic frameworks via transmission electron microscopy. J. Am. Chem. Soc. 142, 17224â17235 (2020).
Hosono, N., Terashima, A., Kusaka, S., Matsuda, R. & Kitagawa, S. Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nat. Chem. 11, 109â116 (2019).
Parent, L. R. et al. Pore breathing of metalâorganic frameworks by environmental transmission electron microscopy. J. Am. Chem. Soc. 139, 13973â13976 (2017).
Soldatov, M. A. et al. The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of metalâorganic frameworks. Polyhedron 155, 232â253 (2018).
Bordiga, S., Bonino, F., Lillerud, K. P. & Lamberti, C. X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chem. Soc. Rev. 39, 4885â4927 (2010).
Kortright, J. B., Marti, A. M., Culp, J. T., Venna, S. & Hopkinson, D. Active response of six-coordinate Cu2+ on CO2 uptake in Cu(dpa)2SiF6-i from in situ X-ray absorption spectroscopy. J. Phys. Chem. C 121, 11519â11523 (2017).
Bon, V. et al. Exceptional adsorption-induced cluster and network deformation in the flexible metal-organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS. Phys. Chem. Chem. Phys. 17, 17471â17479 (2015).
Neu, J. & Schmuttenmaer, C. A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).
Withayachumnankul, W. & Naftaly, M. Fundamentals of measurement in terahertz time-domain spectroscopy. J. Infrared Milli. Terahz. Waves 35, 610â637 (2014).
Neu, J. et al. in 2019 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 1â2 (IEEE, 2019).
Kamencek, T., Bedoya-Martinez, N. & Zojer, E. Understanding phonon properties in isoreticular metal-organic frameworks from first principles. Phys. Rev. Mater. 3, 116003 (2019).
Formalik, F., Fischer, M., Rogacka, J., Firlej, L. & Kuchta, B. Effect of low frequency phonons on structural properties of ZIFs with SOD topology. Microporous Mesoporous Mater. 304, 109132 (2020).
Itakura, T. et al. The role of lattice vibration in the terahertz region for proton conduction in 2D metalâorganic frameworks. Chem. Sci. 11, 1538â1541 (2020).
Ryder, M. R. et al. Identifying the role of terahertz vibrations in metal-organic frameworks: from gate-opening phenomenon to shear-driven structural destabilization. Phys. Rev. Lett. 113, 215502 (2014).
Hoffman, A. E. J., Wieme, J., Rogge, S. M. J., Vanduyfhuys, L. & Van Speybroeck, V. The impact of lattice vibrations on the macroscopic breathing behavior of MIL-53(Al). Z. Kristallogr. Cryst. Mater. 234, 529â545 (2019).
Tan, N. Y. et al. Investigation of the terahertz vibrational modes of ZIF-8 and ZIF-90 with terahertz time-domain spectroscopy. Chem. Commun. 51, 16037â16040 (2015).
Ryder, M. R., Civalleri, B., Cinque, G. & Tan, J. C. Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metalâorganic framework. CrystEngComm 18, 4303â4312 (2016).
Ryder, M. R. et al. Detecting molecular rotational dynamics complementing the low-frequency terahertz vibrations in a zirconium-based metalâorganic framework. Phys. Rev. Lett. 118, 255502 (2017).
Zhang, W. et al. Probing the mechanochemistry of metalâorganic frameworks with low-frequency vibrational spectroscopy. J. Phys. Chem. C 122, 27442â27450 (2018).
Brammer, L. et al. Advanced characterisation techniques: multi-scale, in situ, and time-resolved: general discussion. Faraday Discuss. 225, 152â167 (2021).
Fraux, G., Chibani, S. & Coudert, F. X. Modelling of framework materials at multiple scales: current practices and open questions. Phil. Trans. R. Soc. A 377, 20180220 (2019).
Chong, S., Lee, S., Kim, B. & Kim, J. Applications of machine learning in metalâorganic frameworks. Coord. Chem. Rev. 423, 213487 (2020).
Chibani, S. & Coudert, F. X. Machine learning approaches for the prediction of materials properties. APL Mater. 8, 080701 (2020).
Marques, M. A. L. & Gross, E. K. U. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55, 427â455 (2004).
Khan, I. M., Alam, K. & Alam, M. J. Exploring charge transfer dynamics and photocatalytic behavior of designed donorâacceptor complex: characterization, spectrophotometric and theoretical studies (DFT/TD-DFT). J. Mol. Liq. 310, 113213 (2020).
Van Speybroeck, V., Vandenhaute, S., Hoffman, A. E. J. & Rogge, S. M. J. Towards modeling spatiotemporal processes in metalâorganic frameworks. Trends Chem. 3, 605â619 (2021).
Kumar, N., Weckhuysen, B. M., Wain, A. J. & Pollard, A. J. Nanoscale chemical imaging using tip-enhanced Raman spectroscopy. Nat. Protoc. 14, 1169â1193 (2019).
Acknowledgements
T.L.E. gratefully acknowledges the Royal Society for the award of a University Research Fellowship (6866) and the award of a PhD studentship to D.J.C. (RGF\EA\180183). The authors thank Cardiff University and the EPSRC for additional funding, including a PhD studentship to D.C.W.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisherâs note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cerasale, D.J., Ward, D.C. & Easun, T.L. MOFs in the time domain. Nat Rev Chem 6, 9â30 (2022). https://doi.org/10.1038/s41570-021-00336-8
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-021-00336-8
This article is cited by
-
Construction of a knowledge graph for framework material enabled by large language models and its application
npj Computational Materials (2025)
-
Preparation of nickelâcobalt metal organic framework bearing palladium and manganese nanoparticles and investigation of their anticancer activity
Journal of the Iranian Chemical Society (2025)
-
Benefits and complexity of defects in metal-organic frameworks
Communications Materials (2024)
-
Dynamic three-dimensional structures of a metalâorganic framework captured with femtosecond serial crystallography
Nature Chemistry (2024)
-
Liquid-phase epitaxial layer by layer brushing fabrication of metal-organic frameworks films
Nano Research (2024)


