Skip to main content
See More

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Translational Psychiatry
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. translational psychiatry
  3. articles
  4. article
Functional vs anatomical cortico-striatal connectivity in the macaque brain
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 December 2025

Functional vs anatomical cortico-striatal connectivity in the macaque brain

  • Wei Tang  ORCID: orcid.org/0000-0003-3550-40761,
  • Megan E. Monko2,
  • Zoe Liu2,
  • Ana M. G. Manea  ORCID: orcid.org/0000-0002-4786-96572,3,
  • Fernando A. Ortega2,
  • Damyan Hart2,
  • Jason Zhou2,
  • Jan Zimmermann  ORCID: orcid.org/0000-0003-3345-60742,3 &
  • …
  • Sarah R. Heilbronner  ORCID: orcid.org/0000-0003-0893-53644,5 

Translational Psychiatry , Article number:  (2025) Cite this article

  • 768 Accesses

  • 11 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neuroscience
  • Psychology

Abstract

The cerebral cortex provides the main input to the striatum, constituting the first step in cortico-basal ganglia loops. Decades of careful anatomical tract-tracing research have established the exquisite topography of each cortical region’s projection to the striatum in nonhuman primates. In parallel, neuroimaging research has demonstrated the relationship between cortico-striatal resting-state functional connectivity and specific cognitive, behavioral, psychiatric, and neurological states in humans. However, still unclear is the extent to which functional connectivity recapitulates the specific topographies of cortico-striatal anatomical connectivity. Here, we combined datasets of cortico-striatal anatomical and functional connectivity in macaques to determine the degree of overlap between the two. Across multiple metrics of similarity, we found that anatomical and functional connectivity demonstrated higher correspondence in the frontal and primary somatosensory cortices, with lower correspondence in other brain regions. This suggests that there are many regions in the brain in which cortico-striatal functional connectivity may not be driven by direct anatomical connectivity.

Similar content being viewed by others

Differential trajectories of corticostriatal structural connectivity in individuals at clinical high risk for psychosis according to functional outcome

Article Open access 26 August 2025

High-resolution cortical parcellation based on conserved brain landmarks for localization of multimodal data to the nearest centimeter

Article Open access 05 November 2022

Intracranial direct electrical mapping reveals the functional architecture of the human basal ganglia

Article Open access 23 October 2022

Data availability

Data are available at https://github.com/srheilbronner/corticostriatal.

References

  1. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Google Scholar 

  2. Balleine BW, Delgado MR, Hikosaka O. The role of the dorsal striatum in reward and decision-making. J Neurosci. 2007;27:8161–5.

    Google Scholar 

  3. Graybiel AM, Grafton ST. The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol. 2015;7:a021691.

    Google Scholar 

  4. Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18:7–21.

    Google Scholar 

  5. Berendse HW, Galisde Graaf Y, Groenewegen HJ. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol. 1992;316:314–47.

    Google Scholar 

  6. Ferry AT, Ongur D, An X, Price JL. Prefrontal cortical projections to the striatum in macaque monkeys: evidence for an organization related to prefrontal networks. Journal Comp Neurol. 2000;425:447–70.

    Google Scholar 

  7. Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26:8368–76.

    Google Scholar 

  8. Hintiryan H, Foster NN, Bowman I, Bay M, Song MY, Gou L, et al. The mouse cortico-striatal projectome. Nat Neurosci. 2016;19:1100–14.

    Google Scholar 

  9. Mailly P, Aliane V, Groenewegen HJ, Haber SN, Deniau JM. The rat prefrontostriatal system analyzed in 3D: evidence for multiple interacting functional units. J Neurosci. 2013;33:5718–27.

    Google Scholar 

  10. Dogan I, Eickhoff CR, Fox PT, Laird AR, Schulz JB, Eickhoff SB, et al. Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington’s disease. NeuroImage: Clin. 2015;7:640–52.

    Google Scholar 

  11. Fettes P, Schulze L, Downar J. Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Front Syst Neurosci. 2017;11:25.

    Google Scholar 

  12. Peters SK, Dunlop K, Downar J. Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front Syst Neurosci. 2016;10:104. https://doi.org/10.3389/fnsys.2016.00104.

    Google Scholar 

  13. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I. Spatial remapping of cortico-striatal connectivity in Parkinson’s Disease. Cereb Cortex. 2010;20:1175–86.

    Google Scholar 

  14. Sha Z, Versace A, Edmiston EK, Fournier J, Graur S, Greenberg T, et al. Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Res: Neuroimaging. 2020;300:111081.

    Google Scholar 

  15. Furman DJ, Hamilton JP, Gotlib IH. Frontostriatal functional connectivity in major depressive disorder. Biol Mood Anxiety Disord. 2011;1:1–11.

    Google Scholar 

  16. Haag L, Quetscher C, Dharmadhikari S, Dydak U, Schmidt-Wilcke T, Beste C. Interrelation of resting state functional connectivity, striatal GABA levels, and cognitive control processes. Hum Brain Mapp. 2015;36:4383–93.

    Google Scholar 

  17. Raghanti MA, Miller EN, Jones DN, Smith HN, Munger EL, Edler MK, et al. Hedonic eating, obesity, and addiction result from increased neuropeptide Y in the nucleus accumbens during human brain evolution. Proc Natl Acad Sci USA. 2023;120:e2311118120.

    Google Scholar 

  18. Toni I. Changes of cortico-striatal effective connectivity during visuomotor learning. Cereb Cortex. 2002;12:1040–7.

    Google Scholar 

  19. Harsay HA, Cohen MX, Oosterhof NN, Forstmann BU, Mars RB, Ridderinkhof KR. Functional connectivity of the striatum links motivation to action control in humans. Journal Neurosci. 2011;31:10701–11.

    Google Scholar 

  20. Horga G, Maia TV, Marsh R, Hao X, Xu D, Duan Y, et al. Changes in corticostriatal connectivity during reinforcement learning in humans. Hum Brain Mapp. 2015;36:793–803.

    Google Scholar 

  21. Frank LE, Preston AR, Zeithamova D. Functional connectivity between memory and reward centers across task and rest track memory sensitivity to reward. Cogn Affect Behav Neurosci. 2019;19:503–22.

    Google Scholar 

  22. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    Google Scholar 

  23. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012;108:2242–63.

    Google Scholar 

  24. Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, et al. Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex. 2008;18:2735–47.

    Google Scholar 

  25. Calzavara R, Mailly P, Haber SN. Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: an anatomical substrate for cognition to action. Eur J Neurosci. 2007;26:2005–24.

    Google Scholar 

  26. Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR. Meta-analytic connectivity modeling reveals differential functional connectivity of the medial and lateral orbitofrontal cortex. Cereb Cortex. 2014;24:232–48.

    Google Scholar 

  27. Flaherty AW, Graybiel AM. Two input systems for body representations in the primate striatal matrix: experimental evidence in the squirrel monkey. J Neurosci. 1993;13:1120–37.

    Google Scholar 

  28. Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJM, et al. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal Neurosci. 2008;28:7143–52.

    Google Scholar 

  29. Marquand AF, Haak KV, Beckmann CF. Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nat Hum Behav. 2017;1:0146.

    Google Scholar 

  30. Peng X, Trambaiolli LR, Choi EY, Lehman JF, Linn G, Russ BE, et al. Cross-species striatal hubs: Linking anatomy to resting-state connectivity. Neuroimage. 2024;301:120866.

    Google Scholar 

  31. Hori Y, Schaeffer DJ, Gilbert KM, Hayrynen LK, Cléry JC, Gati JS, et al. Comparison of resting-state functional connectivity in marmosets with tracer-based cellular connectivity. Neuroimage. 2020;204:116241.

    Google Scholar 

  32. Shen K, Bezgin G, Hutchison RM, Gati JS, Menon RS, Everling S, et al. Information processing architecture of functionally defined clusters in the macaque cortex. J Neurosci. 2012;32:17465–76.

    Google Scholar 

  33. Miranda-Dominguez O, Mills BD, Grayson D, Woodall A, Grant KA, Kroenke CD, et al. Bridging the gap between the human and macaque connectome: a quantitative comparison of global interspecies structure-function relationships and network topology. J Neurosci. 2014;34:5552–63.

    Google Scholar 

  34. Manea AM, Zilverstand A, Ugurbil K, Heilbronner SR, Zimmermann J. Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain. eLife. 2022;11:e75540.

    Google Scholar 

  35. Yacoub E, Grier MD, Auerbach EJ, Lagore RL, Harel N, Adriany G, et al. Ultra-high field (10.5 T) resting state fMRI in the macaque. Neuroimage. 2020;223:117349.

    Google Scholar 

  36. Lagore RL, Moeller S, Zimmermann J, DelaBarre L, Radder J, Grant A, et al. An 8-dipole transceive and 24-loop receive array for non-human primate head imaging at 10.5 T. NMR Biomed. 2021;34:1–11.

    Google Scholar 

  37. Moeller S, Yacoub E, Olman CA, Auerbach E, Strupp J, Harel N, et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn Reson Med. 2010;63:1144–53.

    Google Scholar 

  38. Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B, et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage. 2012;63:569–80.

    Google Scholar 

  39. Ugurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, et al. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage. 2013;80:80–104.

    Google Scholar 

  40. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–90.

    Google Scholar 

  41. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–44.

    Google Scholar 

  42. Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The Insight ToolKit image registration framework. Front Neuroinform. 2014;8:1–13.

    Google Scholar 

  43. Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers Biomed Res. 1996;29:162–73.

    Google Scholar 

  44. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

    Google Scholar 

  45. Seidlitz J, Sponheim C, Glen D, Ye FQ, Saleem KS, Leopold DA, et al. A population MRI brain template and analysis tools for the macaque. Neuroimage. 2018;170:121–31.

    Google Scholar 

  46. Hallquist MN, Hwang K, Luna B. The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage. 2013;82:208–25.

    Google Scholar 

  47. Seidlitz J, Sponheim C, Glen D, Ye FQ, Saleem KS, Leopold DA. A population MRI brain template and analysis tools for the macaque. NeuroImage. 2017;170:121–31.

    Google Scholar 

  48. Baizer JS, Desimone R, Ungerleider LG. Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis Neurosci. 1993;10:59–72.

    Google Scholar 

  49. Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J Neurosci. 1997;17:9686–705.

    Google Scholar 

  50. Choi EY, Ding S-L, Haber SN. Combinatorial inputs to the ventral striatum from the temporal cortex, frontal cortex, and amygdala: implications for segmenting the striatum. eNeuro. 2017;4:ENEURO.0392-17.2017.

    Google Scholar 

  51. Choi EY, Tanimura Y, Vage PR, Yates EH, Haber SN. Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. Neuroimage. 2017;146:821–32.

    Google Scholar 

  52. Fudge JL, Breitbart MA, Danish M, Pannoni V. Insular and gustatory inputs to the caudal ventral striatum in primates. J Comp Neurol. 2005;490:101–18.

    Google Scholar 

  53. Jezzini A, Rozzi S, Borra E, Gallese V, Caruana F, Gerbella M. A shared neural network for emotional expression and perception: an anatomical study in the macaque monkey. Front Behav Neurosci. 2015;9:243. https://doi.org/10.3389/fnbeh.2015.00243.

    Google Scholar 

  54. Jones EG, Coulter JD, Burton H, Porter R. Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory-motor cortex of monkeys. J Comp Neurol. 1977;173:53–80.

    Google Scholar 

  55. Kunzle H. Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey. Exp Brain Res. 1977;30:481–92.

    Google Scholar 

  56. Parvizi J, Van Hoesen GW, Buckwalter J, Damasio A. Neural connections of the posteromedial cortex in the macaque. Proc Natl Acad Sci USA. 2006;103:1563–8.

    Google Scholar 

  57. Schmahmann J, Pandya D Fiber Pathways of the Brain. Oxford University Press, Inc.: New York, 2006.

  58. Weber JT, Yin TC. Subcortical projections of the inferior parietal cortex (area 7) in the stump-tailed monkey. J Comp Neurol. 1984;224:206–30.

    Google Scholar 

  59. Yeterian EH, Pandya DN. Corticostriatal connections of extrastriate visual areas in rhesus monkeys. Journal Comp Neurol. 1995;352:436–57.

    Google Scholar 

  60. Yeterian EH, Pandya DN. Corticostriatal connections of the superior temporal region in rhesus monkeys. Journal Comp Neurol. 1998;399:384–402.

    Google Scholar 

  61. Heilbronner SR, Rodriguez-Romaguera J, Quirk GJ, Groenewegen HJ, Haber SN. Circuit-based corticostriatal homologies between rat and primate. Biol Psychiatry. 2016;80:509–21. https://doi.org/10.1016/j.biopsych.2016.05.012.

    Google Scholar 

  62. Monko ME, Heilbronner SR. Retrosplenial cortical connectivity with frontal basal ganglia networks. J Cogn Neurosci. 2021;33:1096–105.

    Google Scholar 

  63. Hartig R, Glen D, Jung B, Logothetis NK, Paxinos G, Garza-Villarreal EA, et al. The subcortical atlas of the rhesus macaque (SARM) for neuroimaging. Neuroimage. 2021;235:117996.

    Google Scholar 

  64. Averbeck BB, Lehman J, Jacobson M, Haber SN. Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J Neurosci. 2014;34:9497–505.

    Google Scholar 

  65. Wobbrock JO, Findlater L, Gergle D, Higgins JJ The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM: Vancouver BC Canada, 2011, pp 143-6.

  66. Kemp JM, Powell TP. The cortico-striate projection in the monkey. Brain. 1970;93:525–46.

    Google Scholar 

  67. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Google Scholar 

  68. Guo Q, Wang D, He X, Feng Q, Lin R, Xu F, et al. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS ONE. 2015;10:e0123381.

    Google Scholar 

  69. Weiss AR, Liguore WA, Domire JS, Button D, McBride JL. Intra-striatal AAV2.retro administration leads to extensive retrograde transport in the rhesus macaque brain: implications for disease modeling and therapeutic development. Sci Rep. 2020;10:6970. https://doi.org/10.1038/s41598-020-63559-7.

    Google Scholar 

  70. McHale AC, Cho YT, Fudge JL. Cortical granularity shapes the organization of afferent paths to the amygdala and its striatal targets in nonhuman primate. J Neurosci. 2022;42:1436–53.

    Google Scholar 

  71. Kemp JM, Powell TP. The connexions of the striatum and globus pallidus: synthesis and speculation. Philosophical Trans R Soc Lond - Ser B: Biol Sci. 1971;262:441–57.

    Google Scholar 

  72. Strick PL, Card JP Transneuronal mapping of neural circuits with alpha herpesviruses. Experimental neuroanatomy: a practical approach (Bolam JP, ed) 1992; : 81–101.

  73. Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.

    Google Scholar 

  74. Lynch JC, Hoover JE, Strick PL. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res. 1994;100:181–6.

    Google Scholar 

  75. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.

    Google Scholar 

  76. Middleton FA, Strick PL. The temporal lobe is a target of output from the basal ganglia. Proc Natl Acad Sci USA. 1996;93:8683–7.

    Google Scholar 

  77. Levesque M, Parent A. Axonal arborization of corticostriatal and corticothalamic fibers arising from prelimbic cortex in the rat. Cereb Cortex. 1998;8:602–13.

    Google Scholar 

  78. Levesque M, Parent A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA. 2005;102:11888–93.

    Google Scholar 

  79. Wilson CJ. Postsynaptic potentials evoked in spiny neostriatal projection neurons by stimulation of ipsilateral and contralateral neocortex. Brain Res. 1986;367:201–13.

    Google Scholar 

  80. Gou L, Wang Y, Gao L, Liu S, Wang M, Chai Q, et al. Single-neuron projectomes of macaque prefrontal cortex reveal refined axon targeting and arborization. Cell. 2025;188:3806–22.e24.

    Google Scholar 

  81. Li S, Shen Y, Chen Y, Hong Z, Zhang L, Ding L, et al. Single-neuron reconstruction of the macaque primary motor cortex reveals the diversity of neuronal morphology. Neurosci Bull. 2025;41:525–30.

    Google Scholar 

  82. Xu F, Shen Y, Ding L, Yang C-Y, Tan H, Wang H, et al. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. Nat Biotechnol. 2021;39:1521–8.

    Google Scholar 

  83. Gordon EM, Laumann TO, Marek S, Newbold DJ, Hampton JM, Seider NA, et al. Individualized functional subnetworks connect human striatum and frontal cortex. Cereb Cortex. 2022;32:2868–84.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Tanya Casta, Maya Wang, and Adriana Cushnie for assistance with data collection.

Funding

We acknowledge funding from R01MH118257, P30DA04872, R01EB031765, P41EB027061, and the Robert and Janice McNair Foundation.

Author information

Authors and Affiliations

  1. Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA

    Wei Tang

  2. Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA

    Megan E. Monko, Zoe Liu, Ana M. G. Manea, Fernando A. Ortega, Damyan Hart, Jason Zhou & Jan Zimmermann

  3. Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA

    Ana M. G. Manea & Jan Zimmermann

  4. Departments of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX, USA

    Sarah R. Heilbronner

  5. Department of Electrical and Computer Engineering and NeuroEngineering Initiative, Rice University, Houston, TX, USA

    Sarah R. Heilbronner

Authors
  1. Wei Tang
    View author publications

    Search author on:PubMed Google Scholar

  2. Megan E. Monko
    View author publications

    Search author on:PubMed Google Scholar

  3. Zoe Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Ana M. G. Manea
    View author publications

    Search author on:PubMed Google Scholar

  5. Fernando A. Ortega
    View author publications

    Search author on:PubMed Google Scholar

  6. Damyan Hart
    View author publications

    Search author on:PubMed Google Scholar

  7. Jason Zhou
    View author publications

    Search author on:PubMed Google Scholar

  8. Jan Zimmermann
    View author publications

    Search author on:PubMed Google Scholar

  9. Sarah R. Heilbronner
    View author publications

    Search author on:PubMed Google Scholar

Contributions

MEM and SRH designed the study. MEM, AMGM, FAO, DH, J Zhou, J Zimmermann, and SRH collected data. WT, MEM, ZL, AMG, JZ, and SRH analyzed data. J Zimmermann and SRH contributed project funding, administration, and supervision. WT and SRH wrote the first manuscript draft. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sarah R. Heilbronner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. Animal experiments were approved by the Institutional Animal Care and Use Committee at the University of Minnesota (PHS Approved Animal Welfare Assurance D16-00288).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Monko, M.E., Liu, Z. et al. Functional vs anatomical cortico-striatal connectivity in the macaque brain. Transl Psychiatry (2025). https://doi.org/10.1038/s41398-025-03757-x

Download citation

  • Received: 14 April 2025

  • Revised: 27 October 2025

  • Accepted: 07 November 2025

  • Published: 05 December 2025

  • DOI: https://doi.org/10.1038/s41398-025-03757-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Publishing
  • About the Editors
  • Contact
  • For Advertisers
  • Calls for Papers
  • Press Releases

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Translational Psychiatry (Transl Psychiatry)

ISSN 2158-3188 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited