Abstract
Reducing society's reliance on fossil fuels presents one of the most pressing energy and environmental challenges facing our planet. Hydrogen, methane and carbon dioxide, which are some of the smallest and simplest molecules known, may lie at the centre of solving this problem through realization of a carbon-neutral energy cycle. Potentially, this could be achieved through the deployment of hydrogen as the fuel of the long term, methane as a transitional fuel, and carbon dioxide capture and sequestration as the urgent response to ongoing climate change. Here we detail strategies and technologies developed to overcome the difficulties encountered in the capture, storage, delivery and conversion of these gas molecules. In particular, we focus on metalâorganic frameworks in which metal oxide âhubsâ are linked with organic âstrutsâ to make materials of ultrahigh porosity, which provide a basis for addressing this challenge through materials design on the molecular level.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

© LU DING/DELFT UNIVERSITY OF TECHNOLOGY




Similar content being viewed by others
References
BP Statistical Review of World Energy June 2015 (BP, 2015); http://go.nature.com/YgrZI1
CO2 Emissions (World Bank, 2015); http://go.nature.com/yLaqyF
America's Energy Future: Technology and Transformation: Summary Edition (National Academies Press, 2009); http://go.nature.com/YLvTAe This report provides information on potentials barriers costs and impact of energy supply and technologies.
Zhou, N. et al. China's Energy and Carbon Emissions Outlook to 2050 (China Energy Group, Lawrence Berkeley National Laboratory, 2011); http://go.nature.com/toqvwR
Lighting the Way: Toward a Sustainable Energy Future (InterAcademy Council, 2007); http://go.nature.com/LfJR9g
Basic Research Needs for Carbon Capture: Beyond 2020 (US Department of Energy, 2010); http://go.nature.com/1bM9qj
The Impact of Increased Use of Hydrogen on Petroleum Consumption and Carbon Dioxide Emissions (Energy Information Administration, 2008); http://go.nature.com/4Bk1jV
Basic Research Needs for the Hydrogen Economy (US Department of Energy, 2004); http://go.nature.com/GZYzy6
Lipman, T. An Overview of Hydrogen Production and Storage Systems with Renewable Hydrogen Case Studies (Clean Energy States Alliance, 2011); http://go.nature.com/p2ZuT4
Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353â358 (2001).
Hydrogen Storage (US Department of Energy, 2015); http://go.nature.com/ispE6Q
Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles (USDRIVE, 2015); http://go.nature.com/EHHdZ5
Zoellter, J. Mercedes-Benz F125 concept: Mercedes' dream of a 2025 S-class takes flight. Car and Driver (21 October 2015); http://go.nature.com/kFaC3e
Sudik, A. et al. Ford/BASF-SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence (HSECoE, 2015); http://go.nature.com/SrJePp
Wang, X.-S. et al. Enhancing H2 uptake by âclose-packingâ alignment of open copper sites in metalâorganic frameworks. Angew. Chem. Int. Ed. 47, 7263â7266 (2008).
Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metalâorganic frameworks. Chem. Rev. 112, 782â835 (2012).
Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metalâorganic frameworks. J. Am. Chem. Soc. 128, 1304â1315 (2006).
Rowsell, J. L. C. & Yaghi, O. M. Strategies for hydrogen storage in metalâorganic frameworks. Angew. Chem. Int. Ed. 44, 4670â4679 (2005). This paper highlights different strategies for hydrogen storage in MOFs being used today and has led to room temperature uptake of 2â3 wt% and 6 wt% at 77 K.
Mulfort, K. L., Farha, O. K., Stern, C. L., Sarjeant, A. A. & Hupp, J. T. Post-synthesis alkoxide formation within metalâorganic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131, 3866â3868 (2009).
Li, Y. & Yang, R. T. Significantly enhanced hydrogen storage in metalâorganic frameworks via spillover. J. Am. Chem. Soc. 128, 726â727 (2006).
Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523â527 (2004). This contribution details a strategy and interpretation for using exposed six-membered rings to make ultrahigh-porosity MOFs.
Furukawa, H., Miller, M. A. & Yaghi, O. M. Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metalâorganic frameworks. J. Mater. Chem. 17, 3197â3204 (2007).
Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247â289 (2003).
Furukawa, H. et al. Ultrahigh porosity in metalâorganic frameworks. Science 329, 424â428 (2010).
Grunker, R. et al. A new metalâorganic framework with ultra-high surface area. Chem. Commun. 50, 3450â3452 (2014).
Eddaoudi, M. et al. Porous metalâorganic polyhedra:25 Ã cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J. Am. Chem. Soc. 123, 4368â4369 (2001).
Moulton, B., Lu, J., Mondal, A. & Zaworotko, M. J. Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem. Commun. 9, 863â864 (2001).
Nouar, F. et al. Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metalâorganic frameworks. J. Am. Chem. Soc. 130, 1833â1835 (2008). This contribution provided the foundation for a large class of isoreticular MOFs with high H2 adsorption.
Yan, Y. et al. Metalâorganic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J. Am. Chem. Soc. 132, 4092â4094 (2010).
Yuan, D., Zhao, D., Sun, D. & Zhou, H.-C. An isoreticular series of metalâorganic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357â5361 (2010).
Farha, O. K. et al. De novo synthesis of a metalâorganic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chem. 2, 944â948 (2010).
Farha, O. K. et al. Designing higher surface area metalâorganic frameworks: are triple bonds better than phenyls?. J. Am. Chem. Soc. 134, 9860â9863 (2012).
Farha, O. K. et al. Metalâorganic framework materials with ultrahigh surface areas: is the sky the limit?. J. Am. Chem. Soc. 134, 15016â15021 (2012). This paper reports a MOF that currently holds the world record with respect to BET surface area.
Liu L. Konstas K. Hill M. R. & Telfer S. G. Programmed pore architectures in modular quaternary metalâorganic frameworks. J. Am. Chem. Soc. 135, 17731â17734 (2013).
Schoedel, A., Boyette, W., Wojtas, L., Eddaoudi, M. & Zaworotko, M. J. A family of porous lonsdaleite-e networks obtained through pillaring of decorated kagomé lattice sheets. J. Am. Chem. Soc. 135, 14016â14019 (2013).
Schoedel, A. et al. The asc trinodal platform: two-step assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks. Angew. Chem. Int. Ed. 52, 2902â2905 (2013).
Frost, H., Düren, T. & Snurr, R. Q. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metalâorganic frameworks. J. Phys. Chem. B 110, 9565â9570 (2006).
Yang, Q. & Zhong, C. Understanding hydrogen adsorption in metalâorganic frameworks with open metal sites: a computational study. J. Phys. Chem. B 110, 655â658 (2006).
Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metalâorganic framework. Chem. Commun. 36, 5436â5438 (2009).
Bae, Y.-S. & Snurr, R. Q. Optimal isosteric heat of adsorption for hydrogen storage and delivery using metalâorganic frameworks. Micropor. Mesopor. Mater. 132, 300â303 (2010).
Ren, J., Langmi, H. W., North, B. C. & Mathe, M. Review on processing of metalâorganic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 39, 607â620 (2015).
MOVE Program Overview (ARPA-E, 2012); http://go.nature.com/Vuqhoi
Peng, Y. et al. Methane storage in metalâorganic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc. 135, 11887â11894 (2013).
Simon, C. M. et al. The materials genome in action: identifying the performance limits for methane storage. Energy Environ. Sci. 8, 1190â1199 (2015).
Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469â472 (2002). This publication describes use of the isoreticular principle in making MOFs and designing their interior for methane storage.
Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metalâorganic framework. Nature 402, 276â279 (1999). This contribution revealed the first MOF with porosity and surface area exceeding previous records and featuring a robust architecture.
Noro, S.-i., Kitagawa, S., Kondo, M. & Seki, K. A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4â²-bipyridine)2}n]. Angew. Chem. Int. Ed. 39, 2081â2084 (2000).
Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148â1150 (1999).
Gándara, F., Furukawa, H., Lee, S. & Yaghi, O. M. High methane storage capacity in aluminum metalâorganic frameworks. J. Am. Chem. Soc. 136, 5271â5274 (2014). This paper shows that the availability of polyphenylene units as terminal ligands in MOFs provides for ultrahigh methane delivery.
Alezi, D. et al. MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J. Am. Chem. Soc. 137, 13308â13318 (2015).
Wilmer, C. E. et al. Gram-scale, high-yield synthesis of a robust metalâorganic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158â1163 (2013).
Wu, H., Zhou, W. & Yildirim, T. High-capacity methane storage in metalâorganic frameworks M2(dhtp): the important role of open metal sites. J. Am. Chem. Soc. 131, 4995â5000 (2009).
Wilmer, C. E. et al. Large-scale screening of hypothetical metalâorganic frameworks. Nature Chem. 4, 83â89 (2012).
Luthi, D. et al. High-resolution carbon dioxide concentration record 650,000â800,000 years before present. Nature 453, 379â382 (2008).
Atmospheric CO 2 Data (Scripps Institution of Oceanography, 2015); http://go.nature.com/z3Cgf5
Socolow, R. Stabilization Wedges and the Polygame (2013); http://go.nature.com/7j8mBi
Pacala, S. & Socolow, R. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305, 968â972 (2004).
Orr, J. F. M. CO2 capture and storage: are we ready? Energy Environ. Sci. 2, 449â458 (2009).
Sumida, K. et al. Carbon dioxide capture in metalâorganic frameworks. Chem. Rev. 112, 724â781 (2012).
Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870â10871 (2008).
Rosi, N. L. et al. Rod packings and metalâorganic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504â1518 (2005).
Li, B. et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metalâorganic framework. Angew. Chem. Int. Ed. 51, 1412â1415 (2012).
Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80â84 (2013). This publication shows a crystal engineering strategy to control pore funtionality and size in MOFs for CO2 separation in the presence of water.
Cui, P. et al. Multipoint interactions enhanced CO2 uptake: a zeolite-like zincâtetrazole framework with 24-nuclear zinc cages. J. Am. Chem. Soc. 134, 18892â18895 (2012).
Granite, E. J. & Pennline, H. W. Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. 41, 5470â5476 (2002).
Britt, D., Furukawa, H., Wang, B., Glover, T. G. & Yaghi, O. M. From the cover: highly efficient separation of carbon dioxide by a metalâorganic framework replete with open metal sites. Proc. Natl Acad. Sci. USA 106, 20637â20640 (2009).
Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. & Liu, J. Progress in adsorption-based CO2 capture by metalâorganic frameworks. Chem. Soc. Rev. 41, 2308â2322 (2012).
Fracaroli, A. M. et al. Metalâorganic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863â8866 (2014). This paper demonstrates a method for covalently functionalizing the interior of MOFs to capture CO2 in the presence of water.
Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787â4803 (2015).
Nguyen, N. T. et al. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem. Int. Ed. 53, 10645â10648 (2014).
Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650â653 (2010).
McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metalâorganic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056â7065 (2012).
McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metalâorganic frameworks. Nature 519, 303â308 (2015).
Deng, H. et al. Large-pore apertures in a series of metalâorganic frameworks. Science 336, 1018â1023 (2012).
Xiang, S. et al. Microporous metalâorganic framework with potential for carbon dioxide capture at ambient conditions. Nature Commun. 3, 954 (2012).
Li, J.-R. et al. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nature Commun. 4, 1538 (2013).
Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metalâorganic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030â3040 (2011).
Liu, B. & Smit, B. Comparative molecular simulation study of CO2/N2 and CH4/N2 Separation in zeolites and metalâorganic frameworks. Langmuir 25, 5918â5926 (2009).
Yazaydın, A. O. et al. Screening of metalâorganic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198â18199 (2009).
Wilmer, C. E. & Snurr, R. Q. Towards rapid computational screening of metalâorganic frameworks for carbon dioxide capture: calculation of framework charges via charge equilibration. Chem. Eng. J. 171, 775â781 (2011).
Greathouse, J. A. & Allendorf, M. D. The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678â10679 (2006).
Deng, H. et al. Multiple functional groups of varying ratios in metalâorganic frameworks. Science 327, 846â850 (2010).
Furukawa, H., Müller, U. & Yaghi, O. M. âHeterogeneity within orderâ in metalâorganic frameworks. Angew. Chem. Int. Ed. 54, 3417â3430 (2015).
Somorjai, G. A., Frei, H. & Park, J. Y. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J. Am. Chem. Soc. 131, 16589â16605 (2009).
Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166â1170 (2005).
Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875â8883 (2009).
Zhang, T. & Lin, W. Metalâorganic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982â5993 (2014).
Wang, C.-C., Zhang, Y.-Q., Li, J. & Wang, P. Photocatalytic CO2 reduction in metalâorganic frameworks: a mini review. J. Mol. Struct. 1083, 127â136 (2015).
Fu, Y. et al. An amine-functionalized titanium metalâorganic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364â3367 (2012).
Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Doping metalâorganic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445â13454 (2011).
Feng, D. et al. Construction of ultrastable porphyrin Zr metalâorganic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105â17110 (2013).
Gao, W.-Y. et al. Crystal engineering of an nbo topology metalâorganic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615â2619 (2014).
Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208â1213 (2015).
Park, H. J., Lim, D.-W., Yang, W. S., Oh, T.-R. & Suh, M. P. A highly porous metalâorganic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 17, 7251â7260 (2011).
Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705â714 (2003).
Eddaoudi, M. et al. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metalâorganic carboxylate frameworks. Acc. Chem. Res. 34, 319â330 (2001).
Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metalâorganic frameworks. Science 341, 1230444 (2013).
Yaghi, O. M., Li, G. & Li, H. Selective binding and removal of guests in a microporous metalâorganic framework. Nature 378, 703â706 (1995).
Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652â1654 (2009).
Haszeldine, R. S. Carbon capture and storage: how green can black be?. Science 325, 1647â1652 (2009).
Siriwardane, R. V., Shen, M.-S., Fisher, E. P. & Poston, J. A. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15, 279â284 (2001).
Acknowledgements
Funding of MOF research in the Yaghi group is supported by BASF SE (Ludwigshafen, Germany), US Department of Defense, Defense Threat Reduction Agency (HDTRA 1-12-1-0053), US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center grant (DE-SC0001015), and King Abdulaziz City of Science and Technology (KACST). A.S. gratefully acknowledges the German Research Foundation (DFG, SCHO 1639/1-1) for financial support. The authors would like to thank A. Fracaroli for help with collating data on carbon dioxide capture in the presence of water, L. Ding (Delft University of Technology) for producing Fig. 1 graphics, and Ahmad S. Alshammari for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Data 1
Table of metalâorganic frameworks showing BrunauerâEmmettâTeller surface area versus CO2 uptake at 298 K and 1 bar. (XLSX 43 kb)
Rights and permissions
About this article
Cite this article
Schoedel, A., Ji, Z. & Yaghi, O. The role of metalâorganic frameworks in a carbon-neutral energy cycle. Nat Energy 1, 16034 (2016). https://doi.org/10.1038/nenergy.2016.34
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/nenergy.2016.34
This article is cited by
-
Designing reliable and accurate isotope-tracer experiments for CO2 photoreduction
Nature Communications (2023)
-
Boosting Lean Electrolyte LithiumâSulfur Battery Performance with Transition Metals: A Comprehensive Review
Nano-Micro Letters (2023)
-
Predictive Modeling and Control Analysis of Fuel Ratio in Blast Furnace Ironmaking Process Based on Machine Learning
JOM (2023)
-
Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature
Nature Communications (2021)
-
Why Design Matters: From Decorated Metal Oxide Clusters to Functional MetalâOrganic Frameworks
Topics in Current Chemistry (2020)


