Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
Sudden Stratospheric Warmings (SSWs) are key sources of subseasonal predictability and major drivers of extreme winter weather. Yet, their accurate and efficient forecast remains a persistent challenge for numerical weather prediction (NWP) systems due to limitations in physical representation, initialization, and the immense computational demands of ensemble forecasts. While data-driven forecasting is rapidly evolving, its application to the complex, three-dimensional dynamics of SSWs, particularly for probabilistic forecast, remains underexplored. Here, we bridge this gap by developing a Flow Matching-based generative AI model (FM-Cast) for efficient and skillful probabilistic forecasting of the spatiotemporal evolution of stratospheric circulation. Evaluated across 18 major SSW events (1998-2024), FM-Cast skillfully forecasts the onset, intensity, and morphology of 10 events up to 20 days in advance, achieving ensemble accuracies above 50%. Its performance is comparable to or exceeds leading NWP systems while requiring only two minutes for a 50-member, 30-day forecast on a consumer GPU. Furthermore, leveraging FM-Cast as a scientific tool, we demonstrate through idealized experiments that SSW predictability is fundamentally linked to its underlying physical drivers, distinguishing between events forced from the troposphere and those driven by internal stratospheric dynamics. Our work thus establishes a computationally efficient paradigm for probabilistic forecasting stratospheric anomalies and showcases generative AI's potential to deepen the physical understanding of atmosphere-climate dynamics.
With the increasing use of generative Artificial Intelligence (AI) methods to support science workflows, we are interested in the use of discourse-level information to find supporting evidence for AI generated scientific claims. A first step towards this objective is to examine the task of inferring discourse structure in scientific writing. In this work, we present a preliminary investigation of pretrained language model (PLM) and Large Language Model (LLM) approaches for Discourse Relation Classification (DRC), focusing on scientific publications, an under-studied genre for this task. We examine how context can help with the DRC task, with our experiments showing that context, as defined by discourse structure, is generally helpful. We also present an analysis of which scientific discourse relation types might benefit most from context.
Quantization is the key method for reducing inference latency, power and memory footprint of generative AI models. However, accuracy often degrades sharply when activations are quantized below eight bits. Recent work suggests that invertible linear transformations (e.g. rotations) can aid quantization, by reparameterizing feature channels and weights. In this paper, we propose \textit{Sequence Transformation and Mixed Precision} (STaMP) quantization, a novel strategy that applies linear transformations along the \textit{sequence} dimension to exploit the strong local correlation in language and visual data. By keeping a small number of tokens in each intermediate activation at higher precision, we can maintain model accuracy at lower (average) activations bit-widths. We evaluate STaMP on recent LVM and LLM architectures, demonstrating that it significantly improves low bit width activation quantization and complements established activation and weight quantization methods including recent feature transformations.
Autonomous Vehicles (AVs) are transforming the future of transportation through advances in intelligent perception, decision-making, and control systems. However, their success is tied to one core capability, reliable object detection in complex and multimodal environments. While recent breakthroughs in Computer Vision (CV) and Artificial Intelligence (AI) have driven remarkable progress, the field still faces a critical challenge as knowledge remains fragmented across multimodal perception, contextual reasoning, and cooperative intelligence. This survey bridges that gap by delivering a forward-looking analysis of object detection in AVs, emphasizing emerging paradigms such as Vision-Language Models (VLMs), Large Language Models (LLMs), and Generative AI rather than re-examining outdated techniques. We begin by systematically reviewing the fundamental spectrum of AV sensors (camera, ultrasonic, LiDAR, and Radar) and their fusion strategies, highlighting not only their capabilities and limitations in dynamic driving environments but also their potential to integrate with recent advances in LLM/VLM-driven perception frameworks. Next, we introduce a structured categorization of AV datasets that moves beyond simple collections, positioning ego-vehicle, infrastructure-based, and cooperative datasets (e.g., V2V, V2I, V2X, I2I), followed by a cross-analysis of data structures and characteristics. Ultimately, we analyze cutting-edge detection methodologies, ranging from 2D and 3D pipelines to hybrid sensor fusion, with particular attention to emerging transformer-driven approaches powered by Vision Transformers (ViTs), Large and Small Language Models (SLMs), and VLMs. By synthesizing these perspectives, our survey delivers a clear roadmap of current capabilities, open challenges, and future opportunities.
Document AI has advanced rapidly and is attracting increasing attention. Yet, while most efforts have focused on document layout analysis (DLA), its generative counterpart, document layout generation, remains underexplored. A major obstacle lies in the scarcity of diverse layouts: academic papers with Manhattan-style structures dominate existing studies, while open-world genres such as newspapers and magazines remain severely underrepresented. To address this gap, we curate OmniLayout-1M, the first million-scale dataset of diverse document layouts, covering six common document types and comprising contemporary layouts collected from multiple sources. Moreover, since existing methods struggle in complex domains and often fail to arrange long sequences coherently, we introduce OmniLayout-LLM, a 0.5B model with designed two-stage Coarse-to-Fine learning paradigm: 1) learning universal layout principles from OmniLayout-1M with coarse category definitions, and 2) transferring the knowledge to a specific domain with fine-grained annotations. Extensive experiments demonstrate that our approach achieves strong performance on multiple domains in M$^{6}$Doc dataset, substantially surpassing both existing layout generation experts and several latest general-purpose LLMs. Our code, models, and dataset will be publicly released.
Reward models (RMs) play a critical role in aligning large language models (LLMs) with human preferences. Yet in the domain of tool learning, the lack of RMs specifically designed for function-calling tasks has limited progress toward more capable agentic AI. We introduce ToolRM, a family of lightweight generative RMs tailored for general tool-use scenarios. To build these models, we propose a novel pipeline that constructs pairwise preference data using rule-based scoring and multidimensional sampling. This yields ToolPref-Pairwise-30K, a diverse, balanced, and challenging dataset of critique tasks that supports reinforcement learning with verifiable feedback. To evaluate tool-use RMs, we also introduce TRBench$_{BFCL}$, a benchmark built on the agentic evaluation suite BFCL. Trained on our constructed data, models from the Qwen3-4B/8B series achieve up to 14.28% higher accuracy, substantially outperforming frontier models such as Claude 4 and OpenAI o3 in pairwise reward judgments. Beyond training objectives, ToolRM generalizes to broader critique tasks, including Best-of-N sampling and self-correction. Experiments on ACEBench highlight its effectiveness and efficiency, enabling inference-time scaling and reducing output token usage by over 66%. We release data and model checkpoints to facilitate future research.
Visual effects (VFX) are crucial to the expressive power of digital media, yet their creation remains a major challenge for generative AI. Prevailing methods often rely on the one-LoRA-per-effect paradigm, which is resource-intensive and fundamentally incapable of generalizing to unseen effects, thus limiting scalability and creation. To address this challenge, we introduce VFXMaster, the first unified, reference-based framework for VFX video generation. It recasts effect generation as an in-context learning task, enabling it to reproduce diverse dynamic effects from a reference video onto target content. In addition, it demonstrates remarkable generalization to unseen effect categories. Specifically, we design an in-context conditioning strategy that prompts the model with a reference example. An in-context attention mask is designed to precisely decouple and inject the essential effect attributes, allowing a single unified model to master the effect imitation without information leakage. In addition, we propose an efficient one-shot effect adaptation mechanism to boost generalization capability on tough unseen effects from a single user-provided video rapidly. Extensive experiments demonstrate that our method effectively imitates various categories of effect information and exhibits outstanding generalization to out-of-domain effects. To foster future research, we will release our code, models, and a comprehensive dataset to the community.
The electricity sector transition requires substantial increases in residential demand response capacity, yet Home Energy Management Systems (HEMS) adoption remains limited by user interaction barriers requiring translation of everyday preferences into technical parameters. While large language models have been applied to energy systems as code generators and parameter extractors, no existing implementation deploys LLMs as autonomous coordinators managing the complete workflow from natural language input to multi-appliance scheduling. This paper presents an agentic AI HEMS where LLMs autonomously coordinate multi-appliance scheduling from natural language requests to device control, achieving optimal scheduling without example demonstrations. A hierarchical architecture combining one orchestrator with three specialist agents uses the ReAct pattern for iterative reasoning, enabling dynamic coordination without hardcoded workflows while integrating Google Calendar for context-aware deadline extraction. Evaluation across three open-source models using real Austrian day-ahead electricity prices reveals substantial capability differences. Llama-3.3-70B successfully coordinates all appliances across all scenarios to match cost-optimal benchmarks computed via mixed-integer linear programming, while other models achieve perfect single-appliance performance but struggle to coordinate all appliances simultaneously. Progressive prompt engineering experiments demonstrate that analytical query handling without explicit guidance remains unreliable despite models' general reasoning capabilities. We open-source the complete system including orchestration logic, agent prompts, tools, and web interfaces to enable reproducibility, extension, and future research.
The rapid growth of programming education has outpaced traditional assessment tools, leaving faculty with limited means to provide meaningful, scalable feedback. Conventional autograders, while efficient, act as black-box systems that simply return pass/fail results, offering little insight into student thinking or learning needs. Autograder+ is designed to shift autograding from a purely summative process to a formative learning experience. It introduces two key capabilities: automated feedback generation using a fine-tuned Large Language Model, and visualization of student code submissions to uncover learning patterns. The model is fine-tuned on curated student code and expert feedback to ensure pedagogically aligned, context-aware guidance. In evaluation across 600 student submissions from multiple programming tasks, the system produced feedback with strong semantic alignment to instructor comments. For visualization, contrastively learned code embeddings trained on 1,000 annotated submissions enable grouping solutions into meaningful clusters based on functionality and approach. The system also supports prompt-pooling, allowing instructors to guide feedback style through selected prompt templates. By integrating AI-driven feedback, semantic clustering, and interactive visualization, Autograder+ reduces instructor workload while supporting targeted instruction and promoting stronger learning outcomes.