The Wayback Machine - https://web.archive.org/web/20140325211354/http://mathworld.wolfram.com/q-Dimension.html

q-Dimension

Contribute to this entry
 D_q=1/(1-q)lim_(epsilon->0)(lnI(q,epsilon))/(ln(1/epsilon),)
(1)

where

 I(q,epsilon)=sum_(i=1)^Nmu_i^q,
(2)

epsilon is the box size, and mu_i is the natural measure.

The capacity dimension (a.k.a. box-counting dimension) is given by q=0,

D_0=1/(1-0)lim_(epsilon->0)(ln(sum_(i=1)^(N(epsilon))1))/(-lnepsilon)
(3)
=-lim_(epsilon->0)(ln[N(epsilon)])/(lnepsilon).
(4)

If all mu_is are equal, then the capacity dimension is obtained for any q.

The information dimension corresponds to q=1 and is given by

D_1=lim_(q->1)D_q
(5)
=lim_(q->1)(lim_(epsilon->0)(ln[sum_(i=1)^(N(epsilon))mu_i^q])/(-lnepsilon))/(1-q)
(6)
=lim_(epsilon->0)lim_(q->1)(ln(sum_(i=1)^(N(epsilon))mu_i^q))/((q-1)lnepsilon).
(7)

But for the numerator,

 lim_(q->1)ln(sum_(i=1)^(N(epsilon))mu_i^q)=ln(sum_(i=1)^(N(epsilon))mu_i)=ln1=0,
(8)

and for the denominator, lim_(q->1)(q-1)=0, so use l'Hospital's rule to obtain

 D_1=lim_(epsilon->0)(1/(lnepsilon)lim_(q->1)(summu_i^qlnmu_i)/1).
(9)

Therefore,

 D_1=lim_(epsilon->0)(sum_(i=1)^(N(epsilon))mu_ilnmu_i)/(lnepsilon)
(10)

(Ott 1993, p. 79).

D_2 is called the correlation dimension.

If q_1>q_2, then

 D_(q_1)<=D_(q_2)
(11)

(Ott 1993, p. 79).

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computable Document Format »

The format that makes Demonstrations (and any information) easy to share and interact with.

STEM initiative »

Programs & resources for educators, schools & students.

Computerbasedmath.org »

Join the initiative for modernizing math education.