The Wayback Machine - https://web.archive.org/web/20140325055540/http://mathworld.wolfram.com/Subspace.html
Topology > Spaces >

Subspace

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld Classroom

Let V be a real vector space (e.g., the real continuous functions C(I) on a closed interval I, two-dimensional Euclidean space R^2, the twice differentiable real functions C^((2))(I) on I, etc.). Then W is a real subspace of V if W is a subset of V and, for every w_1, w_2 in W and t in R (the reals), w_1+w_2 in W and tw_1 in W. Let (H) be a homogeneous system of linear equations in x_1, ..., x_n. Then the subset S of R^n which consists of all solutions of the system (H) is a subspace of R^n.

More generally, let F_q be a field with q=p^alpha, where p is prime, and let F_(q,n) denote the n-dimensional vector space over F_q. The number of k-D linear subspaces of F_(q,n) is

 N(F_(q,n))=(n; k)_q,
(1)

where this is the q-binomial coefficient (Aigner 1979, Exton 1983). The asymptotic limit is

 N(F_(q,n))={c_eq^(n^2/4)[1+o(1)]   for n even; c_oq^(n^2/4)[1+o(1)]   for n odd,
(2)

where

c_e=(sum_(k=-infty)^(infty)q^(-k^2))/(product_(j=1)^(infty)(1-q^(-j)))
(3)
=(theta_3(q^(-1)))/((q^(-1))_infty)
(4)
c_o=(sum_(k=-infty)^(infty)q^(-(k+1/2)^2))/(product_(j=1)^(infty)(1-q^(-j)))
(5)
=(theta_2(q^(-1)))/((q^(-1))_infty)
(6)

(Finch 2003), where theta_n(q) is a Jacobi theta function and (q)_infty=(q;q)_infty is a q-Pochhammer symbol. The case q=2 gives the q-analog of the Wallis formula.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computable Document Format »

The format that makes Demonstrations (and any information) easy to share and interact with.

STEM initiative »

Programs & resources for educators, schools & students.

Computerbasedmath.org »

Join the initiative for modernizing math education.