Related Pages
(Updated 11 November 2011)Â
The use of thorium as a new primary energy source has been a tantalizing prospect for many years. Extracting its latent energy value in a cost-effective manner remains a challenge, and will require considerable R&D investment.
Thorium is a naturally-occurring, slightly radioactive metal discovered in 1828 by the Swedish chemist Jons Jakob Berzelius, who named it after Thor, the Norse god of thunder. It is found in small amounts in most rocks and soils, where it is about three times more abundant than uranium. Soil commonly contains an average of around 6 parts per million (ppm) of thorium.
Thorium exists in nature in a single isotopic form - Th-232 - which decays very slowly (its half-life is about three times the age of the Earth). The decay chains of natural thorium and uranium give rise to minute traces of Th-228, Th-230 and Th-234, but the presence of these in mass terms is negligible.
When pure, thorium is a silvery white metal that retains its lustre for several months. However, when it is contaminated with the oxide, thorium slowly tarnishes in air, becoming grey and eventually black. Thorium oxide (ThO2), also called thoria, has one of the highest melting points of all oxides (3300°C). When heated in air, thorium metal turnings ignite and burn brilliantly with a white light. Because of these properties, thorium has found applications in light bulb elements, lantern mantles, arc-light lamps, welding electrodes and heat-resistant ceramics. Glass containing thorium oxide has a high refractive index and dispersion and is used in high quality lenses for cameras and scientific instruments.
The most common source of thorium is the rare earth phosphate mineral, monazite, which contains up to about 12% thorium phosphate, but 6-7% on average. Monazite is found in igneous and other rocks but the richest concentrations are in placer deposits, concentrated by wave and current action with other heavy minerals. World monazite resources are estimated to be about 12 million tonnes, two-thirds of which are in heavy mineral sands deposits on the south and east coasts of India. There are substantial deposits in several other countries (see Table below). Thorium recovery from monazite usually involves leaching with sodium hydroxide at 140°C followed by a complex process to precipitate pure ThO2.
Thorite (ThSiO4) is another common mineral. A large vein deposit of thorium and rare earth metals is in Idaho.
The 2007 IAEA-NEA publication Uranium 2007: Resources, Production and Demand (often referred to as the 'Red Book') gives a figure of 4.4 million tonnes of total known and estimated resources, but this excludes data from much of the world. Data for reasonably assured and inferred resources recoverable at a cost of $80/kg Th or less are given in the table below. Some of the figures are based on assumptions and surrogate data for mineral sands, not direct geological data in the same way as most mineral resources.
Estimated world thorium resources1Â
Â
Thorium (Th-232) is not itself fissile and so is not directly usable in a thermal neutron reactor â in this regard it is very similar to uranium-238. However, it is âfertileâ and upon absorbing a neutron will transmute to uranium-233 (U-233)a, which is an excellent fissile fuel material b. Thorium fuel concepts therefore require that Th-232 is first irradiated in a reactor to provide the necessary neutron dosing. The U-233 that is produced can either be chemically separated from the parent thorium fuel and recycled into new fuel, or the U-233 may be usable âin-situâ in the same fuel form.
Thorium fuels therefore need a fissile material as a âdriverâ so that a chain reaction (and thus supply of surplus neutrons) can be maintained. The only fissile driver options are U-233, U-235 or Pu-239 (none of which is easy to supply).It is possible â but quite difficult â to design thorium fuels that produce more U-233 in thermal reactors than the fissile material they consume (this is referred to as having a fissile conversion ratio of more than 1.0 and is also called breeding). Thermal breeding with thorium is only really possible using U-233 as the fissile driver, and to achieve this the neutron economy in the reactor has to be very good (ie, low neutron loss through escape or parasitic absorption). Â The possibility to breed fissile material in slow neutron systems is a unique feature for thorium-based fuels and is not possible with uranium fuels. Another distinct option for using thorium is as a âfertile matrixâ for fuels containing plutonium (and even other transuranic elements like americium). No new plutonium is produced from the thorium component, unlike for uranium fuels, and so the level of net consumption of this metal is rather high. In fresh thorium fuel, all of the fissions (thus power and neutrons) derive from the driver component. As the fuel operates the U-233 content gradually increases and it contributes more and more to the power output of the fuel. The ultimate energy output from U-233 (and hence indirectly thorium) depends on numerous fuel design parameters, including: fuel burn-up attained, fuel arrangement, neutron energy spectrum and neutron flux (affecting the intermediate product protactinium-233, which is a neutron absorber).
An important principle in the design of thorium fuel is that of heterogeneous fuel arrangements in which a high fissile (and therefore higher power) fuel zone called the seed region is physically separated from the fertile (low or zero power) thorium part of the fuel â called the blanket. Such an arrangement is far better for supplying surplus neutrons to thorium nuclei so they can convert to fissile U-233, in fact all thermal breeding fuel designs are heterogeneous. This principle applies to all the thorium-capable reactor systems.Â
Reactors able to use Thorium
There are seven types of reactor into which thorium can be introduced as a nuclear fuel. The first five of these have all entered into operational service at some point. The last two are still conceptual:
A key finding from thorium fuel studies to date is that it is not economically viable to use low-enriched uranium (LEU - with a U-235 content of up to 20%) as a fissile driver with thorium fuels, unless the fuel burn-up can be taken to very high levels â well beyond those currently attainable in LWRs with zirconium cladding.With regard to proliferation significance, thorium-based power reactor fuels would be very poor source for fissile material usable in the illicit manufacture of an explosive device. U-233 contained in spent thorium fuel contains U-232 which decays to produce very radioactive daughter nuclides and these create a strong gamma radiation field. This confers proliferation resistance by creating significant handling problems and by greatly boosting the detectability (traceability) and ability to safeguard this material. Prior Thorium Fuelled Electricity GenerationThere have been several significant demonstrations of the use of thorium-based fuels to generate electricity in several reactor types. Many of these early trials were able to use high-enriched uranium (HEU) as the fissile âdriverâ component, and this would not be considered today.
 Other Thorium Energy R&D â Past & PresentResearch into the use of thorium as a nuclear fuel has been taking place for over 40 years, though with much less intensity than that for uranium or uranium-plutonium fuels. Basic development work has been conducted in Germany, India, Canada, Japan, China, Netherlands, Belgium, Norway, Russia, Brazil, the UK & the USA. Test irradiations have been conducted on a number of different thorium-based fuel forms.
Noteworthy studies and experiments involving thorium fuel include:
Heavy Water Reactors: Thorium-based fuels for the âCanduâ PHWR system have been designed and tested in Canada for more than 50 years, including burn-up to 47 GWd/t. Dozens of test irradiations have been performed on fuels including: ThO2, mixed ThO2-UO2, (both LEU and HEU), and mixed ThO2-PuO2, (both reactor- and weapons-grade). R&D into thorium fuel use in CANDU reactors continues to be pursued by Canadian and Chinese groups. The fuels have performed well in terms of their material properties. Closed thorium fuel cycles have been designed [4] in which PHWRs play a key role due to their fuelling flexibility: thoria-based HWR fuels can incorporate recycled U-233, residual plutonium and uranium from used LWR fuel, and also minor actinide components in waste-reduction strategies. Indiaâs nuclear developers have designed an Advanced Heavy Water Reactor (AHWR) specifically as a means for âburningâ thorium â this will be the final phase of their 3-phase nuclear energy infrastructure plan (see below). The reactor will operate with a power of 300 MWe using thorium-plutonium or thorium-U-233 seed fuel in mixed oxide form. It is heavy water moderated (& light water cooled) and is capable of self-sustaining U-233 production. In each assembly 30 of the fuel pins will be Th-U-233 oxide, arranged in concentric rings. About 75% of the power will come from the thorium. Construction of the pilot AHWR may start in 2012.High-Temperature Gas-Cooled Reactors: Thorium fuel was used in HTRs prior to the successful demonstration reactors described above. The UK operated the 20 MWth Dragon HTR from 1964 to 1973 for 741 full power days. Dragon was run as an OECD/Euratom cooperation project, involving Austria, Denmark, Sweden, Norway and Switzerland in addition to the UK. This reactor used thorium-HEU fuel elements in a 'breed and feed' mode in which the U-233 formed during operation replaced the consumption of U-235 at about the same rate. The fuel could be left in the reactor for about six years.Germany operated the Atom Versuchs Reaktor (AVR) at Jülich for over 750 weeks between 1967 and 1988. This was a small pebble bed reactor that operated at 15 MWe, mainly with thorium-HEU fuel. About 1360 kg of thorium was used in some 100,000 pebbles. Burn-ups of 150 GWd/t were achieved. Pebble bed reactor development builds on German work with the AVR and THTR and is under development in China (HTR-10, and HTR-PM).  Light Water Reactors: The feasibility of using thorium fuels in a PWR was studied in considerable detail during a collaborative project between Germany and Brazil in the 1980s [5]. The vision was to design fuel strategies that used materials effectively â recycling of plutonium and U-233 was seen to be logical. The study showed that appreciable conversion to U-233 could be obtained with various thorium fuels, and that useful uranium savings could be achieved. The program terminated in 1988 for non-technical reasons. It did not reach its later stages which would have involved trial irradiations of thorium-plutonium fuels in the Angra-1 PWR in Brazil, although preliminary Th-fuel irradiation experiments were performed in Germany. Most findings from this study remain relevant today. Thorium-plutonium oxide (Th-MOX) fuels for LWRs are being developed by Norwegian proponents with a view that these are the most readily achievable option for tapping energy from thorium. This is because such fuel is usable in existing reactors (with minimal modification) and the fuel can be made in existing uranium-MOX plants, using existing technology and licensing experience. A thorium-MOX fuel irradiation experiment will get underway in the Halden fuel testing reactor in 2012. The so-called Radkowsky Thorium Reactor is a specific, heterogeneous âseed & blanketâ thorium fuel concept, originally designed for Russian-type LWRs (VVERs) [6]. Enriched uranium (20% U-235) or plutonium is used in a seed region at the centre of a fuel assembly, with this fuel being in a unique metallic form. The central seed portion is demountable from the blanket material which remains in the reactor for nine years e, but the centre seed portion is burned for only three years (as in a normal VVER). Design of the seed fuel rods in the centre portion draws on experience of Russian naval reactors.The European Framework Program has supported a number of relevant research activities into thorium fuel use in LWRs. Three distinct trial irradiations have been performed on thorium-plutonium fuels, including a test pin loaded in the Obrigheim PWR over 2002-06 during which it achieved about 38 GWd/t burnup.A small amount of thorium-plutonium fuel was irradiated in the 60 MWe Lingen BWR in Germany in the early 1970s. The fuel contained 2.6 % of high fissile-grade plutonium (86% Pu-239) and the fuel achieved about 20 GWd/t burnup. The experiment was not representative of commercial fuel, however the experiment allowed for fundamental data collection and benchmarking of codes for this fuel material.Molten Salt Reactors: The Oak Ridge National Laboratory (USA) designed and built a thorium-based demonstration MSR using U-233 as the main fissile driver. The reactor ran over 1965-69 and operated at powers up to 7.4 MWt. The lithium-beryllium-thorium salt worked at 600-700oC and ambient pressure. The R&D program demonstrated the feasibility of this system and highlighted some unique corrosion and operational issues that need to be addressed if constructing a larger pilot MSR. There is significant renewed interest in developing thorium-fuelled MSRs. Projects are (or have recently been) underway in China, Japan, Russia, France and the USA. It is notable that the MSR is one of the six âGeneration IVâ reactor designs selected as worthy of further development (see information page on Generation IV Nuclear Reactors). The thorium-fuelled MSR variant is sometimes referred to at the Liquid Fluoride Thorium Reactor (LFTR). See subsection below.An aqueous homogenous suspension reactor operated in the Netherlands at 1 MWth for three years using thorium in the mid-1970s. The thorium-HEU fuel was circulated in solution with continuous reprocessing outside the core to remove fission products, resulting in a high conversion rate to U-233.Accelerator-Driven Reactors: A number of groups have investigated how a thorium-fuelled accelerator-driven reactor (ADS) may work and appear. Perhaps most notable is the âADTRâ design patented by a UK group. This reactor operates very close to criticality and therefore requires a relatively small proton beam to drive the spallation neutron source. Earlier proposals for ADS reactors required high-energy and high-current proton beams which are energy-intensive to produce, and for which operational reliability is a problem.Research Reactor âKaminiâ: India has been operating a low-power U-233 fuelled reactor at Kalpakkam since 1996 â this is a 30 kWth experimental facility using U-233 in aluminium plates (a typical fuel-form for research reactors). Kamini is water cooled with a beryllia neutron reflector. The total mass of U-233 in the core is around 600 grams. It is noteworthy for being the only U-233 fuelled reactor in the world, though it does not in itself directly support thorium fuel R&D. The reactor is adjacent to the 40 MWt Fast Breeder Test Reactor in which ThO2 is irradiated, producing the U-233 for Kamini.
Fast breeder reactors (FBRs) play an ancillary role in India's three-stage nuclear power program (see subsection on India's plans for thorium cycle below) but do not themselves use thorium.Â
Liquid Fluoride Thorium ReactorÂ
A development of the MSR concept is the Liquid Fluoride Thorium Reactor (LFTR), utilizing U-233 which has been bred in a liquid thorium salt blanket.*
Safety is achieved with a freeze plug which if power is cut allows the fuel to drain into subcritical geometry in a catch basin. There is also a negative temperature coefficient of reactivity due to expansion of the fuel.
The China Academy of Sciences in January 2011 launched an R&D program on LFTR, known there as the thorium-breeding molten-salt reactor (Th-MSR or TMSR), and claimed to have the world's largest national effort on it, hoping to obtain full intellectual property rights on the technology.
India's plans for thorium cycleÂ
With huge resources of easily-accessible thorium and relatively little uranium, India has made utilization of thorium for large-scale energy production a major goal in its nuclear power programme, utilising a three-stage concept:
This Indian programme has moved from aiming to be sustained simply with thorium to one 'driven' with the addition of further fissile  plutonium from the FBR fleet, to give greater efficiency. In 2009, despite the relaxation of trade restrictions on uranium, India reaffirmed its intention to proceed with developing the thorium cycle.
A 500 MWe prototype FBR under construction in Kalpakkam is designed to produce plutonium to enable AHWRs to breed U-233 from thorium. India is focusing and prioritizing the construction and commissioning of its sodium-cooled fast reactor fleet in which it will breed the required plutonium. This will take another 15 â 20 years and so it will still be some time before India is using thorium energy to a significant extent.
Thorium fuel cycles offer attractive features, including lower levels of waste generation, less transuranic elements in that waste, and providing a diversification option for nuclear fuel supply. Also, the use of thorium in most reactor types leads to significant extra safety margins. Despite these merits, the commercialization of thorium fuels faces some significant hurdles in terms of building an economic case to undertake the necessary development work.A great deal of testing, analysis and licensing and qualification work is required before any thorium fuel can enter into service. This is expensive and will not eventuate without a clear business case and government support - abundant uranium is available. Other impediments to the development of thorium fuel cycle are the higher cost of fuel fabrication* and the cost of reprocessing to provide the fissile plutonium driver material.* The high cost of fuel fabrication is due partly to the high level of radioactivity that builds up in U-233 chemically separated from the irradiated thorium fuel. Separated U-233 is always contaminated with traces of U-232 which decays (with a 69-year half-life) to daughter nuclides such as thallium-208 that are high-energy gamma emitters. Although this confers proliferation resistance to the fuel cycle by making U-233 hard to handle and easy to detect, it results in increased costs. There are similar problems in recycling thorium itself due to highly radioactive Th-228 (an alpha emitter with two-year half life) present.Nevertheless, the thorium fuel cycle offers enormous energy security benefits in the long-term â due to its potential for being a self-sustaining fuel without the need for fast neutron reactors. It is therefore an important and potentially viable technology that seems able to contribute to building credible, long-term nuclear energy scenarios. Â
Further InformationÂ
Notes
a. Neutron absorption by Th-232 produces Th-233 which beta-decays (with a half-life of about 22 minutes) to protactinium-233 (Pa-233) â and this decays to U-233 by further beta decay (with a half-life of 27 days). Some of the bred-in U-233 is converted to U-234 by further neutron absorption. U-234 is an unwanted parasitic neutron absorber. It converts to fissile U-235 (the naturally occuring fissile isotope of uranium) and this somewhat compensates for this neutronic penalty. In fuel cycles involving the multi-recycle of thorium-U-233 fuels, the build up of U-234 can be appreciable. [Back]
b. A U-233 nucleus yields more neutrons, on average, when it fissions (splits) than either a uranium-235 or plutonium-239 nucleus. In other words, for every thermal neutron absorbed in a U-233 fuel there are a greater number of neutrons produced and released into the surrounding fuel. This gives better neutron economy in the reactor system.. [Back]
c. MSRs using thorium will likely have a distinct âblanketâ circuit which is optimised for producing U-233 from dissolved thorium. Neutron moderation is tailored by the amount of graphite in the core (aiming for an epithermal spectrum). This uranium can be selectively removed as uranium hexafluoride (UF6) by bubbling fluorine gas through the salt. After conversion it can be directed to the core as fissile fuel. [Back]
d. Spallation is the process where nucleons are ejected from a heavy nucleus being hit by a high energy particle. In this case, a high-enery proton beam directed at a heavy target expels a number of spallation particles, including neutrons. [Back]
e. Blanket fuel is designed to reach 100 GWd/t burn-up. Together, the seed and blanket have the same geometry as a normal VVER-100 fuel assembly (331 rods in a hexagonal array 235 mm wide). [Back]
References
1. Data taken from Uranium 2007: Resources, Production and Demand, Nuclear Energy Agency (June 2008), NEA#6345 (ISBN 9789264047662). The 2009 figures are largely unchanged. Australian data from Thorium, in Australian Atlas of Minerals Resources, Mines & Processing Centres, Geoscience Australia (see below under General sources) [Back]
2. 2. K.P. Steward, âFinal Summary Report on the Peach Bottom End-of-Life Programâ, General Atomics Report GA-A14404, (1978)3. (i) W.J. Babyak, L.B. Freeman, H.F. Raab, âLWBR: A successful demonstration completedâ Nuclear News, Sept 1988, pp114-116 (1988), (ii) J.C. Clayton, âThe Shippingport Pressurized Water Reactor and Light Water Breeder Reactorâ Westinghouse Bettis Atomic Power Laboratory WAPD-T-3007 (October 1993). [Back]4. (i) S. Åahin, etal, âCANDU Reactor as Minor Actinide / Thorium Burner with Uniform Power Density in the Fuel Bundleâ Ann.Nuc.Energy. 35, 690-703 (2008), (ii) J. Yu, K, Wang, R. Sollychin, etal, âThorium Fuel Cycle of a Thorium-Based Advanced Nuclear Energy Systemâ Prog.Nucl.Energy. 45, 71-84 (2004) [Back]5. âGerman Brazilian Program of Research and Development on Thorium Utilization in PWRsâ, Final Report, Kernforschungsanlage Jülich, 1988. [Back]
6. A. Galperin, A. Radkowsky and M. Todosow, A Competitive Thorium Fuel Cycle for Pressurized Water Reactors of Current Technology, Proceedings of three International Atomic Energy Agency meetings held in Vienna in 1997, 1998 and 1999, IAEA TECDOC 1319: Thorium fuel utilization: Options and trends, IAEA-TECDOC-1319. [Back]
Thorium based fuel options for the generation of electricity: Developments in the 1990s, IAEA-TECDOC-1155, International Atomic Energy Agency, May 2000
Thorium, in Australian Atlas of Minerals Resources, Mines & Processing Centres (www.australianminesatlas.gov.au), Geoscience Australia (2009)
Taesin Chung, The role of thorium in nuclear energy, Uranium Industry Annual 1996, Energy Information Administration, DOE/EIA-0478(96) p.ix-xvii (April 1997)
M. Benedict, T H Pigford and H W Levi, Nuclear Chemical Engineering (2nd Ed.), Chapter 6: Thorium, , p.283-317, 1981, McGraw-Hill(ISBN: 0070045313)
Kazimi M.S. 2003, Thorium Fuel for Nuclear Energy, American Scientist (Sept-Oct 2003)
W.J. Babyak, L.B. Freeman, H.F. Raab, âLWBR: A successful demonstration completedâ Nuclear News, Sept 1988, pp114-116 (1988)
12th Indian Nuclear Society Annual Conference 2001 conference proceedings, vol 2 (lead paper)
Several papers and articles related to the Radkowsky thorium fuel concept are available on the Lightbridge (formerly Thorium Power) website (www.ltbridge.com)
Robert Hargraves and Ralph Moir, Liquid Fluoride Thorium Reactors, American Scientist, Vol. 98, No. 4, P. 304 (July-August 2010)
Related information pages
Accelerator-Driven Nuclear EnergyGeneration IV Nuclear ReactorsNuclear Power in IndiaÂ