Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar;8(3):397-407.
doi: 10.1093/hmg/8.3.397.

Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin

Affiliations

Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin

G Schilling et al. Hum Mol Genet. 1999 Mar.

Erratum in

  • Hum Mol Genet 1999 May;8(5):943

Abstract

Huntington's disease (HD) is an inherited, neurodegenerative disorder caused by the expansion of a glutamine repeat in the N-terminus of the huntingtin protein. To gain insight into the pathogenesis of HD, we generated transgenic mice that express a cDNA encoding an N-terminal fragment (171 amino acids) of huntingtin with 82, 44 or 18 glutamines. Mice expressing relatively low steady-state levels of N171 huntingtin with 82 glutamine repeats (N171-82Q) develop behavioral abnormalities, including loss of coordination, tremors, hypokinesis and abnormal gait, before dying prematurely. In mice exhibiting these abnormalities, diffuse nuclear labeling, intranuclear inclusions and neuritic aggregates, all immunoreactive with an antibody to the N-terminus (amino acids 1-17) of huntingtin (AP194), were found in multiple populations of neurons. None of these behavioral or pathological phenotypes were seen in mice expressing N171-18Q. These findings are consistent with the idea that N-terminal fragments of huntingtin with a repeat expansion are toxic to neurons, and that N-terminal fragments are prone to form both intranuclear inclusions and neuritic aggregates.

PubMed Disclaimer

Publication types

LinkOut - more resources