Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr;8(4):371-80.

Transformation by v-Jun prevents cell cycle exit and promotes apoptosis in the absence of serum growth factors

Affiliations
  • PMID: 9101083

Transformation by v-Jun prevents cell cycle exit and promotes apoptosis in the absence of serum growth factors

W Clark et al. Cell Growth Differ. 1997 Apr.

Abstract

To gain insight into the mechanism of action of the v-Jun oncoprotein, we compared the growth and cell cycle behavior of normal and v-Jun-transformed fibroblasts. We show that v-Jun induces marked alterations in cell cycle regulation in both the presence and absence of serum growth factors. During asynchronous growth, v-Jun-transformed fibroblasts divide more rapidly than their normal counterparts, owing to a reduction in the length of the G1 phase of the cell cycle. When deprived of serum mitogens, normal fibroblasts exit the cycle and enter a reversible state of quiescence (G0). In contrast, v-Jun-transformed fibroblasts continue to cycle and maintain increased levels of retinoblastoma tumor suppressor protein phosphorylation and elevated expression of cell cycle-dependent markers such as cyclin A, cyclin-dependent protein kinase 2 (CDK2), and CDC2. v-Jun-transformed fibroblasts nevertheless remain wholly dependent on growth factors for cell multiplication, because cell cycle progression in the absence of serum is accompanied by high rates of apoptotic cell death. We conclude that v-Jun shares the capacity of the Myc, E1A, and E2F oncoproteins to promote both cell cycle progression and apoptosis under conditions of mitogen depletion.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources