Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 18;272(16):10585-93.
doi: 10.1074/jbc.272.16.10585.

Leptin impairs metabolic actions of insulin in isolated rat adipocytes

Affiliations
Free article

Leptin impairs metabolic actions of insulin in isolated rat adipocytes

G Müller et al. J Biol Chem. .
Free article

Abstract

Leptin is an adipocyte hormone involved in the regulation of energy homeostasis. Generally accepted biological effects of leptin are inhibition of food intake and stimulation of metabolic rate in ob/ob mice that are defective in the leptin gene. In contrast to these centrally mediated effects of leptin, we are reporting here on leptin effects on isolated rat adipocytes. Leptin impairs several metabolic actions of insulin, i.e. stimulation of glucose transport, glycogen synthase, lipogenesis, inhibition of isoproterenol-induced lipolysis, and protein kinase A activation, as well as stimulation of protein synthesis. Insulin effects were reduced by leptin (2 nM) with a half-life of about 8 h. At low leptin concentrations (<1 nM), the insulin sensitivity was reduced leading to a shift to the right in the dose-response curve. At higher concentrations the responsiveness was diminished, resulting in nearly complete inhibition of insulin effects at >30 nM leptin. The IC50 value of leptin was 3.1 +/- 1 nM after 15 h of preincubation of adipocytes in primary culture. The natural splice variant des-Gln49-leptin exhibited a significantly lower potency. Adipocytes regained full insulin sensitivity within a few hours after leptin removal. The stimulation of glucose transport by vanadate was not affected by leptin. These data show specific and potent impairment of insulin action by leptin in the physiological concentration range of both leptin and insulin, which may be related to the pathophysiology of insulin resistance in both non-insulin-dependent diabetes mellitus and obesity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources