Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul 26;271(30):18181-7.
doi: 10.1074/jbc.271.30.18181.

The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation

Affiliations
Free article

The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation

A A Welihinda et al. J Biol Chem. .
Free article

Abstract

In eukaryotic cells, accumulation of unfolded proteins in the endoplasmic reticulum (ER) results in a transcriptional induction of a number of ER chaperone proteins. In Saccharomyces cerevisiae, the putative transmembrane receptor kinase, Ire1p (Ern1p), has been implicated as the sensor of unfolded proteins in the ER that initiates transmittance of the unfolded protein signal from the ER to the nucleus. We have shown that the cytoplasmic domain of Ire1p receptor indeed has intrinsic Ser/Thr kinase activity and contains Ser/Thr phosphorylation sites as well. The cytoplasmic domain is also shown to form oligomers in vivo and in vitro. The ability to form oligomers primarily resides within the last 130 amino acids of the cytoplasmic domain, a region that is dispensable for in vitro kinase activity of the receptor. Oligomerization of the cytoplasmic domains is required for receptor trans-phosphorylation and subsequent activation of the kinase function. The activated kinase may transmit the unfolded protein signal from the ER to the nucleus to activate the transcription of the chaperone genes in the nucleus.

PubMed Disclaimer

MeSH terms

Substances