Generative Adversarial Networks for Crystal Structure Prediction
- PMID: 32875082
- PMCID: PMC7453563
- DOI: 10.1021/acscentsci.0c00426
Generative Adversarial Networks for Crystal Structure Prediction
Erratum in
-
Correction to "Generative Adversarial Networks for Crystal Structure Prediction".ACS Cent Sci. 2022 Mar 23;8(3):402. doi: 10.1021/acscentsci.2c00218. Epub 2022 Mar 8. ACS Cent Sci. 2022. PMID: 35355815 Free PMC article.
Abstract
The constant demand for novel functional materials calls for efficient strategies to accelerate the materials discovery, and crystal structure prediction is one of the most fundamental tasks along that direction. In addressing this challenge, generative models can offer new opportunities since they allow for the continuous navigation of chemical space via latent spaces. In this work, we employ a crystal representation that is inversion-free based on unit cell and fractional atomic coordinates and build a generative adversarial network for crystal structures. The proposed model is applied to generate the Mg-Mn-O ternary materials with the theoretical evaluation of their photoanode properties for high-throughput virtual screening (HTVS). The proposed generative HTVS framework predicts 23 new crystal structures with reasonable calculated stability and band gap. These findings suggest that the generative model can be an effective way to explore hidden portions of the chemical space, an area that is usually unreachable when conventional substitution-based discovery is employed.
Copyright © 2020 American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Inorganic crystal structure database. http://icsd.fiz-karlsruhe.de.
-
- Gómez-Bombarelli R.; Aguilera-Iparraguirre J.; Hirzel T. D.; Duvenaud D.; Maclaurin D.; Blood-Forsythe M. A.; Chae H. S.; Einzinger M.; Ha D.-G.; Wu T. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 2016, 15 (10), 1120.10.1038/nmat4717. - DOI - PubMed
-
- Pyzer-Knapp E. O.; Suh C.; Gómez-Bombarelli R.; Aguilera-Iparraguirre J.; Aspuru-Guzik A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res. 2015, 45, 195.10.1146/annurev-matsci-070214-020823. - DOI
-
- Shinde A.; Suram S. K.; Yan Q.; Zhou L.; Singh A. K.; Yu J.; Persson K. A.; Neaton J. B.; Gregoire J. M. Discovery of manganese-based solar fuel photoanodes via integration of electronic structure calculations, pourbaix stability modeling, and high-throughput experiments. ACS Energy Lett. 2017, 2 (10), 2307.10.1021/acsenergylett.7b00607. - DOI
-
- Wu Y.; Lazic P.; Hautier G.; Persson K.; Ceder G. First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci. 2013, 6 (1), 157.10.1039/C2EE23482C. - DOI
LinkOut - more resources
Full Text Sources
Miscellaneous
