Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2019 Jun 10;12(1):57.
doi: 10.1186/s13045-019-0741-6.

Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation

Affiliations
Case Reports

Haploidentical CD19/CD22 bispecific CAR-T cells induced MRD-negative remission in a patient with relapsed and refractory adult B-ALL after haploidentical hematopoietic stem cell transplantation

Hejin Jia et al. J Hematol Oncol. .

Abstract

Background: Chimeric antigen receptor T (CAR-T) cell therapy simultaneously against CD19 and CD22 is an attractive strategy to address the antigen escape relapse after CD19-directed CAR-T cell therapies. However, the potential of optimizing the durability of remission by this approach in patients with B cell acute lymphoblastic leukemia (B-ALL) remains a critical unanswered question so far.

Case presentation: We treated an adult patient with relapsed and refractory B-ALL after haploidentical hematopoietic stem cell transplantation (HSCT) by administering haploidentical CAR-T cells targeting both CD19 and CD22 following preparative lymphodepleting chemotherapy. This patient has remained in minimal residual disease-negative remission for more than 14 months and has been tapered off graft versus host disease prophylaxis.

Conclusions: CAR simultaneously targeting CD19 and CD22 has the potential of inducing long-term remission in patients with B-ALL.

Keywords: Bispecific CAR-T; CAR-T; Chimeric antigen receptor; GVHD; Haploidentical CAR-T.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Diagrammatic sketch of the treatments
Fig. 2
Fig. 2
Expression of the TanCAR-19/22. a Schematic of the TanCAR-19/22. b TanCAR-19/22 gene expression by FACS. As described in the “Detection of haplo-TanCAR-T 19/22 cells” section, Biotin-SP-AffiniPure Goat Anti-Mouse IgG, F (ab') 2 Fragment Specific and PE Streptavidin antibody were used
Fig. 3
Fig. 3
Clinical activity and expansion of haplo-TanCAR-T 19/22 cells. a There were 0.73% residual marrow blasts with expression of CD22 but loss of CD19 expression at day 14 after infusion, which were undetected by day 28. The cells in the D gate represent the blast population count of the total nucleated cells in BM aspirates. Day 0 is the day of haplo-TanCAR-T 19/22 cell infusion. b BM aspirates before and after haplo-TanCAR-T 19/22 cell infusion. Within the first 28 days after infusion, and at serial time points thereafter for 14 months, there was no evidence of blasts in BM. c, d Haplo-TanCAR-T 19/22 cells expanded within the first 12 days and continue to be detectable by flow cytometry with low levels in PB and BM through more than 14 months. B cells had not recovered as the most recent follow-up. e The presence of haplo-TanCAR-T 19/22 cells in PB and BM as assessed by qPCR
Fig. 4
Fig. 4
Kinetics of presentation of CRS after haplo-TanCAR-T 19/22 cell infusion. a The changes in serum CRP levels and body temperature after haplo-TanCAR-T 19/22 cell infusion. Day 0 is the day of haplo-TanCAR-T 19/22 cell infusion. b Concentrations of listed cytokines in serum obtained from patient at the indicated time points. c Fold changes of listed serum cytokines from baseline (on day 0 before infusion) after haplo-TanCAR-T 19/22 cell infusion. d Serum ALT, AST, e LDH, f prothrombin time and aPTT, g fibrinogen and D-dimer, h serum protein and albumin concentrations are shown at the indicated time points after haplo-TanCAR-T 19/22 cell infusion
Fig. 5
Fig. 5
Presentation of GVHD after haplo-TanCAR-T 19/22 cell infusion. a Skin GVHD after haplo-TanCAR-T 19/22 cell infusion. The prior stage 3 skin GVHD related to haplo-CAR-T 19 cell infusion worsened after haplo-TanCAR-T 19/22 cell infusion and improved significantly after systemic treatment. Day 0 is the day of haplo-TanCAR-T 19/22 cell infusion. b The changes in serum bilirubin levels after haplo-TanCAR-T 19/22 cell infusion, and systemic treatment for GVHD

References

    1. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10:53. doi: 10.1186/s13045-017-0423-1. - DOI - PMC - PubMed
    1. Majzner RG, Mackall CL. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 2018;8:1219–1226. doi: 10.1158/2159-8290.CD-18-0442. - DOI - PubMed
    1. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24:20–28. doi: 10.1038/nm.4441. - DOI - PMC - PubMed
    1. Schultz LM, Davis KL, Baggott C, Chaudry C, Marcy AC, Mavroukakis S, et al. Phase 1 study of CD19/CD22 bispecific chimeric antigen receptor (CAR) therapy in children and young adults with B cell acute lymphoblastic leukemia (ALL) Blood. 2018;132:898.
    1. Hossain N, Sahaf B, Abramian M, Spiegel JY, Kong K, Kim S, et al. Phase I experience with a bi-specific CAR targeting CD19 and CD22 in adults with B-cell malignancies. Blood. 2018;132:490.

Publication types

MeSH terms

LinkOut - more resources