Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 30;15(12):2701.
doi: 10.3390/ijerph15122701.

The Role of Vitamin D and Oxidative Stress in Chronic Kidney Disease

Affiliations

The Role of Vitamin D and Oxidative Stress in Chronic Kidney Disease

Keith C Norris et al. Int J Environ Res Public Health. .

Abstract

Chronic kidney disease (CKD) is a major non-communicable disease associated with high rates of premature morbidity and mortality. The prevalence of hypovitaminosis D (deficiency of 25(OH)D or 25D) is greater in racial/ethnic minorities and in patients with CKD than the general population. Low 25D is associated with bone and mineral disorders as well as immune, cardiometabolic and cardiovascular (CV) diseases. Thus, it has been suggested that low 25D contributes to the poor outcomes in patients with CKD. The prevalence of hypovitaminosis D rises progressively with advancing severity of kidney disease with over 30% of patients with CKD stage 3 and 70% patients with CKD stage 5 estimated to have low levels of 25D. This report describes several of the abnormal physiologic and counter-regulatory actions related to low 25D in CKD such as those in oxidative stress and inflammatory systems, and some of the preclinical and clinical evidence, or lack thereof, of normalizing serum 25D levels to improve outcomes in patients with CKD, and especially for the high risk subset of racial/ethnic minorities who suffer from higher rates of advanced CKD and hypovitaminosis D.

Keywords: disparities; kidney disease; oxidative stress; vitamin D.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Catabolism of 1,25(OH)2D and 25(OH)D. 25(OH)D3, 25-hydroxyvitamin D3; 1,25(OH)2D3, 1,25-dihydroxyvitamin D3; 23,25(OH)2D3, 23,25-dihydroxyvitamin D3; 24,25(OH)2D3, 24,25-dihydroxyvitamin D3; 1,23,25(OH)3D3, 1,23,25-trihydroxyvitamin D3; 1,24,25(OH)3D3, 1,24,25-trihydroxyvitamin D3; 24,25,26,27-tetranor-23(OH)D, 24,25,26,27-tetranor-23-hydroxyvitamin D [17].

References

    1. Blair D., Byham-Gray L., Lewis E., McCaffrey S. Prevalence of vitamin D [25(OH)D] deficiency and effects of supplementation with ergocalciferol (vitamin D2) in stage 5 chronic kidney disease patients. J. Ren. Nutr. 2008;18:375–382. doi: 10.1053/j.jrn.2008.04.008. - DOI - PubMed
    1. Holick M.F. Vitamin D deficiency. N. Engl. J. Med. 2007;357:266–281. doi: 10.1056/NEJMra070553. - DOI - PubMed
    1. Mehrotra R., Kermah D., Budoff M., Salusky I.B., Mao S.S., Gao Y.L., Takasu J., Adler S., Norris K. Hypovitaminosis D in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008;3:1144–1151. doi: 10.2215/CJN.05781207. - DOI - PMC - PubMed
    1. Levin A., Bakris G.L., Molitchm M., Smulders M., Tian J., Williams L.A., Andress D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int. 2007;71:31–38. doi: 10.1038/sj.ki.5002009. - DOI - PubMed
    1. Broe K.E., Chen T.C., Weinberg J., Bischoff-Ferrari H.A., Holick M.F., Kiel D.P. A higher dose of vitamin D reduces the risk of falls in nursing home residents: A randomized, multiple-dose study. J. Am. Geriatr. Soc. 2007;55:234–239. doi: 10.1111/j.1532-5415.2007.01048.x. - DOI - PubMed

Publication types