Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 25;8(30):49165-49177.
doi: 10.18632/oncotarget.17106.

In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma

Affiliations

In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma

Mohammed Khurshed et al. Oncotarget. .

Abstract

Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) initiate low-grade glioma and secondary glioblastoma and induce a neomorphic activity that converts α-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (D-2-HG). It causes metabolic rewiring that is not fully understood. We investigated the effects of IDH1 mutations (IDH1MUT) on expression of genes that encode for metabolic enzymes by data mining The Cancer Genome Atlas. We analyzed 112 IDH1 wild-type (IDH1WT) versus 399 IDH1MUT low-grade glioma and 157 IDH1WT versus 9 IDH1MUT glioblastoma samples. In both glioma types, IDH1WT was associated with high expression levels of genes encoding enzymes that are involved in glycolysis and acetate anaplerosis, whereas IDH1MUT glioma overexpress genes encoding enzymes that are involved in the oxidative tricarboxylic acid (TCA) cycle. In vitro, we observed that IDH1MUT cancer cells have a higher basal respiration compared to IDH1WT cancer cells and inhibition of the IDH1MUT shifts the metabolism by decreasing oxygen consumption and increasing glycolysis. Our findings indicate that IDH1WT glioma have a typical Warburg phenotype whereas in IDH1MUT glioma the TCA cycle, rather than glycolytic lactate production, is the predominant metabolic pathway. Our data further suggest that the TCA in IDH1MUT glioma is driven by lactate and glutamate anaplerosis to facilitate production of α-KG, and ultimately D-2-HG. This metabolic rewiring may be a basis for novel therapies for IDH1MUT and IDH1WT glioma.

Keywords: glioma; glutamate; glycolysis; isocitrate dehydrogenase 1; metabolism.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare no competing interests.

Figures

Figure 1
Figure 1. mRNA expression levels of enzymes involved in glucose metabolism in IDH1WT versus IDH1MUT glioma
IDH1WT glioma show higher expression levels of genes that are typically upregulated in glycolytic cancer cells. (A) Analysis of gene expression levels of metabolic enzymes involved in transport and metabolism of glucose in IDH1WT (n = 399) and IDH1MUT (n = 112) LGG and IDH1WT (n = 157) and IDH1MUT (n = 9) glioblastoma samples obtained from the TCGA database. Relative mRNA expression levels are shown for IDH1WT (blue) and IDH1MUT (red). (B) LDHA and (C) LDHB expression and methylation according to IDH1MUT status (blue: IDH1WT, red: IDH1MUT). Abbreviations: GLUT, glucose transporter; HK, hexokinase; G6PD, glucose-6-phosphate dehydrogenase; PK, pyruvate kinase; LDH, lactate dehydrogenase.
Figure 2
Figure 2. Expression levels of genes of enzymes involved in the TCA cycle in IDH1WT versus IDH1MUT glioma
Increased TCA upstream of isocitrate, but decreased metabolism downstream of isocitrate in IDH1MUT glioma as indicated by gene expression levels of enzymes involved in the TCA cycle in IDH1WT (n = 399) and IDH1MUT (n = 112) LGG and IDH1WT (n = 157) and IDH1MUT (n = 9) glioblastoma. Relative mRNA expression levels are shown for IDH1WT (blue) and IDH1MUT (red). Abbreviations: PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; CS, citrate synthase; ACO, aconitase; IDH, isocitrate dehydrogenase; a-KGDH, α-ketoglutarate dehydrogenase; SDH, succinate dehydrogenase; FH, fumarate hydratase; MDH, malate dehydrogenase.
Figure 3
Figure 3. Contribution of glucose/glutamine/glutamate anaplerosis and acetate influx to TCA cycle metabolism in IDH1WT versus IDH1MUT glioma
Increased glucose/glutamate anaplerosis in IDH1MUT glioma and high contribution of acetate in IDHWT glioma metabolism. (A) Gene expression levels of metabolic enzymes involved in glucose anaplerosis, glutaminolysis and acetate metabolism in IDH1WT (n = 399) and IDH1MUT (n = 112) LGG and IDH1WT (n = 157) and IDH1MUT (n = 9) glioblastoma. Relative mRNA expression levels are shown for IDH1WT (blue) and IDH1MUT (red). (B) BCAT1 expression and methylation according to IDH1MUT status (blue: IDH1WT, red: IDH1MUT). Abbreviations: PC, pyruvate carboxylase; GLUD, glutamate dehydrogenase; GLS, glutaminase; BCAT, branched-chain amino acid transferase; GS, glutamine synthetase; ACSS, acetyl-CoA synthetase.
Figure 4
Figure 4. The metabolic phenotype of IDH1MUT and IDH1WT
(A) Characterization of metabolic phenotype; HCT116 IDH1WT/R132H cells (red) are dependent on OXPHOS, whereas HCT116 IDH1WT/WT cells (blue) cells are glycolytic. (B) The basal oxygen consumption rate (OCR) response of the HCT116 cell lines to 10 mM glucose, 2 mM glutamine and 1.5 mM pyruvate, with or without pretreatment with the IDH1MUT inhibiter AGI-5198 (1 μM, 14 days of incubation). (C) Extracellular acidification rate (ECAR) response of HCT116 cells to glucose (25 mM), with or pretreatment with of AGI-5198 (1 μM, 14 days of incubation). All data were expressed as pmol of O2 per minute and normalized by cell number measured by fluorochrome binding to nucleic acids. A representative experiment out of 4 is shown here, each data point represents mean ± SEM. Plots are visualized with 95% confidence intervals and significance levels are shown by (*P < 0.05), (**P < 0.01) and (****P < 0.0001).
Figure 5
Figure 5. Rewiring of metabolism by IDH1MUT
IDH1WT/IDH1MUT and IDH1MUT/IDH1WT ratios indicate contribution of a particular pathway as calculated on the basis of gene expression levels in IDH1WT and IDH1MUT, respectively. IDH1WT glioma catabolize glucose in the glycolysis with lactate as end product, whereas IDH1MUT glioma prefers production of pyruvate from lactate and use the TCA cycle to generate isocitrate. Glucose, lactate and glutamate replenish the TCA cycle in IDH1MUT glioma, to facilitate α-KG production for consumption by IDH1MUT to generate 2-HG, whereas acetate anaplerosis is important in IDH1WT glioma.

References

    1. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22. doi: 10.1056/NEJMoa1308345. - DOI - PubMed
    1. Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9:1–25. doi: 10.1146/annurev-pathol-011110-130324. - DOI - PubMed
    1. Molenaar RJ, Botman D, Smits MA, Hira VV, van Lith SA, Stap J, Henneman P, Khurshed M, Lenting K, Mul AN, Dimitrakopoulou D, van Drunen CM, Hoebe RA, et al. Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res. 2015;75:4790–802. doi: 10.1158/0008-5472.CAN-14-3603. - DOI - PubMed
    1. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12. doi: 10.1126/science.1164382. - DOI - PMC - PubMed
    1. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol. 2008;116:597–602. doi: 10.1007/s00401-008-0455-2. - DOI - PubMed

MeSH terms

LinkOut - more resources