Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate
- PMID: 26225772
- PMCID: PMC4650730
- DOI: 10.1038/cddis.2015.183
Protein kinase R-like ER kinase and its role in endoplasmic reticulum stress-decided cell fate
Abstract
Over the past few decades, understandings and evidences concerning the role of endoplasmic reticulum (ER) stress in deciding the cell fate have been constantly growing. Generally, during ER stress, the signal transductions are mainly conducted by three ER stress transducers: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring kinase 1 (IRE1) and activating transcription factor 6 (ATF6). Consequently, the harmful stimuli from the ER stress transducers induce apoptosis and autophagy, which share several crosstalks and eventually decide the cell fate. The dominance of apoptosis or autophagy induced by ER stress depends on the type and degree of the stimuli. When ER stress is too severe and prolonged, apoptosis is induced to eliminate the damaged cells; however, when stimuli are mild, cell survival is promoted to maintain normal physiological functions by inducing autophagy. Although all the three pathways participate in ER stress-induced apoptosis and autophagy, PERK shows several unique characteristics by interacting with some specific downstream effectors. Notably, there are some preliminary findings on PERK-dependent mechanisms switching autophagy and apoptosis. In this review, we particularly focused on the novel, intriguing and complicated role of PERK in ER stress-decided cell fate, and also discussed more roles of PERK in restoring cellular homeostasis. However, more in-depth knowledge of PERK in the future would facilitate our understanding about many human diseases and benefit in searching for new molecular therapeutic targets.
Figures
References
-
- 1Boelens J, Lust S, Offner F, Bracke ME, Vanhoecke BW. Review. The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 2007; 21: 215–226. - PubMed
-
- 2Gregor MF, Hotamisligil GS. Thematic review series: adipocyte biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res 2007; 48: 1905–1914. - PubMed
-
- 3Bollini R, Chrispeels MJ. The rough endoplasmic reticulum is the site of reserve-protein synthesis in developing Phaseolus vulgaris cotyledons. Planta 1979; 146: 487–501. - PubMed
-
- 4Rizzolo LJ, Kornfeld R. Post-translational protein modification in the endoplasmic reticulum. Demonstration of fatty acylase and deoxymannojirimycin-sensitive alpha-mannosidase activities. J Biol Chem 1988; 263: 9520–9525. - PubMed
-
- 5Karnik AB, Thakore KN, Nigam SK, Babu KA, Lakkad BC, Bhatt DK et al. Studies on glucose-6-phosphatase, fructose-1,6-diphosphatase activity, glycogen distribution and endoplasmic reticulum changes during hexachlorocyclohexane induced hepatocarcinogenesis in pure inbred Swiss mice. Neoplasma 1981; 28: 575–584. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
