Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Jun 2:6:415.
doi: 10.3389/fpls.2015.00415. eCollection 2015.

Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins

Affiliations
Review

Connecting two arrays: the emerging role of actin-microtubule cross-linking motor proteins

René Schneider et al. Front Plant Sci. .

Abstract

The cytoskeleton of plant cells, consisting of actin filaments (AFs) and microtubules (MTs), is a central structure for various intracellular processes, such as cell division, isotropic and polar growth, vesicle transport, cell shape, and morphogenesis. Pharmaceutical and genetic studies have provided indications for interdependent cross-talk between the cytoskeletal components. Recent live-cell imaging studies have cemented this notion, in particular when the cytoskeleton rearranges. However, the proteins that directly mediate this cross-talk have remained largely elusive. Recent data indicate that certain proteins can interact with both cytoskeletal arrays at the same time, and hence connecting them. In this review, we summarize the recent literature of the AF- and MT-interactors, mainly focusing on a plant-specific mediator of cytoskeletal cross-talk: the calponin homology (CH) domain-containing kinesin-14 motor proteins (KCHs).

Keywords: actin filaments; calponin homology domain; dynein; kinesin-14; microtubules.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Protein structure, intracellular localization, and putative function of KCHs. (A) Representative domain structure of KCHs. The N-terminal CH domain (red) is necessary but not sufficient for actin binding. The motor domain (green) contains the ATP and MT binding sites. It is situated between coiled-coil domains, which facilitate dimerization. (B) Schematic of two possible conformations of the KCH dimer with the MT- and AF-binding sites being freely accessible: a flexible dimeric stalk (left) and a stiffer tetrameric stalk configuration (right). (C) Intracellular localization of KCHs at the cell cortex (left) and in the cell midplane (right) of an idealized BY2 cell during interphase. (D) Two alternative working models of KCH functioning in pre-mitotic nuclear positioning: “Sliding model” (left) and “Pushing/pulling model” (right). The cortical cytoskeleton is depicted as dashed red-green frame. The small green arrows represent forces transmitted via MTs. The large green arrows represents the direction of the resulting net force. The red arrows (labeled with a question mark) indicate a speculative mechanism of force transmission via AFs. (E) One putative function of KCHs may be to transport AFs relative to MTs toward the minus-end.

References

    1. Adames N. R., Cooper J. A. (2000). Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874. 10.1083/jcb.149.4.863 - DOI - PMC - PubMed
    1. Blanchoin L., Boujemaa-Paterski R., Henty J. L., Khurana P., Staiger C. J. (2010). Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game. Curr. Opin. Plant Biol. 13, 714–723. 10.1016/j.pbi.2010.09.013 - DOI - PubMed
    1. Buschmann H., Green P., Sambade A., Doonan J. H., Lloyd C. W. (2010). Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells. New Phytol. 190, 258–267. 10.1111/j.1469-8137.2010.03587.x - DOI - PubMed
    1. Chan J., Calder G. M., Doonan J. H., Lloyd C. W. (2003). EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat. Cell Biol. 5, 967–971. 10.1038/ncb1057 - DOI - PubMed
    1. Collings D. A. (2008). “Crossed-Wires: Interactions and cross-talk between the microtubule and microfilament networks in plants,” in Plant Microtubules - Development and Flexibility, ed. Nick P. (Berlin Heidelberg: Springer-Verlag; ), 47–82. 10.1007/7089_2007_146 - DOI

LinkOut - more resources