Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin's antidiabetic actions
- PMID: 24813890
- PMCID: PMC4369586
- DOI: 10.1016/j.celrep.2014.04.010
Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin's antidiabetic actions
Abstract
Leptin has beneficial effects on glucose metabolism via actions in the hypothalamus, but the roles of specific subgroups of neurons responsible for these antidiabetic effects remain unresolved. We generated diabetic Lep(ob/ob) or Lepr(db/db) mice lacking or re-expressing leptin receptors (LepRb) in subgroups of neurons to explore their contributions to leptin's glucose-lowering actions. We show that agouti-related peptide (AgRP)-expressing neurons are both required and sufficient to correct hyperglycemia by leptin. LepRb in pro-opiomelanocortin (POMC) neurons or steroidogenic factor-1 (SF1) neurons are not required. Furthermore, normalization of blood glucose by leptin is blunted in Lep(ob/ob)/MC4R-null mice, but not in Lep(ob/ob) mice lacking neuropeptide Y (NPY) or gamma-aminobutyric acid (GABA) in AgRP neurons. Leptin's ability to improve glucose balance is accompanied by a reduction in circulating glucagon. We conclude that AgRP neurons play a crucial role in glucose-lowering actions by leptin and that this requires the melanocortin system, but not NPY and GABA.
Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Figures
References
-
- Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC, Jr, Elmquist JK, Lowell BB. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004;42:983–991. - PubMed
-
- Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005;123:493–505. - PubMed
-
- Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell. 1996;84:491–495. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
