MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells
- PMID: 23733953
- PMCID: PMC3690852
- DOI: 10.1073/pnas.1222404110
MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells
Abstract
The MYC genes are the most frequently activated oncogenes in human tumors and are hence attractive therapeutic targets. MYCN amplification leads to poor clinical outcome in childhood neuroblastoma, yet strategies to modulate the function of MYCN do not exist. Here we show that 10058-F4, a characterized c-MYC/Max inhibitor, also targets the MYCN/Max interaction, leading to cell cycle arrest, apoptosis, and neuronal differentiation in MYCN-amplified neuroblastoma cells and to increased survival of MYCN transgenic mice. We also report the discovery that inhibition of MYC is accompanied by accumulation of intracellular lipid droplets in tumor cells as a direct consequence of mitochondrial dysfunction. This study expands on the current knowledge of how MYC proteins control the metabolic reprogramming of cancer cells, especially highlighting lipid metabolism and the respiratory chain as important pathways involved in neuroblastoma pathogenesis. Together our data support direct MYC inhibition as a promising strategy for the treatment of MYC-driven tumors.
Keywords: cancer therapy; fatty acid oxidation; mitochondria; oxidative phosphorylation; small molecule.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976–990. - PubMed
-
- Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol. 2006;16(4):318–330. - PubMed
-
- Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
