Digital sorting of complex tissues for cell type-specific gene expression profiles
- PMID: 23497278
- PMCID: PMC3626856
- DOI: 10.1186/1471-2105-14-89
Digital sorting of complex tissues for cell type-specific gene expression profiles
Abstract
Background: Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations.
Results: Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies.
Conclusions: The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
Figures
Comment in
-
Correspondence regarding Zhong et al., BMC Bioinformatics 2013 Mar 7;14:89.BMC Bioinformatics. 2014 Nov 28;15(1):347. doi: 10.1186/s12859-014-0347-5. BMC Bioinformatics. 2014. PMID: 25431099 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
