Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 May;34(14):3658-66.
doi: 10.1016/j.biomaterials.2013.01.082. Epub 2013 Feb 20.

The anti-tumor efficiency of poly(L-glutamic acid) dendrimers with polyhedral oligomeric silsesquioxane cores

Affiliations

The anti-tumor efficiency of poly(L-glutamic acid) dendrimers with polyhedral oligomeric silsesquioxane cores

Yuji Pu et al. Biomaterials. 2013 May.

Abstract

Peptide dendrimers represent superior drug carriers for their unique nanoarchitectures, excellent degradability and biocompatibility. In this research, poly(L-glutamic acid) dendrimers with polyhedral oligomeric silsesquioxane (POSS) as cores were synthesized. Tumor targeting moiety (biotin) and therapeutic drug doxorubicin (DOX) were immobilized on the dendrimers via pH-sensitive hydrazone bonds. The size distribution and morphology of the drug-dendrimer conjugates were characterized by DLS, AFM, and TEM. The drug release profiles, cellular uptake, in vitro and in vivo anti-tumor activities of the conjugates were investigated. The results revealed that the conjugates aggregated nanoparticles with the size around 100 nm. The drug-dendrimer conjugates could be internalized in mice breast cancer 4T1 cells efficiently. The IC50 of the conjugates was comparable to that of DOX·HCl. The in vivo experiments were carried out in mice xerograft breast cancer models, the results indicated that the inhibition efficiency of the DOX-dendrimer conjugates was much better than that of free DOX·HCl.

PubMed Disclaimer

LinkOut - more resources