Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors
- PMID: 23086298
- PMCID: PMC3508346
- DOI: 10.1038/nchembio.1094
Divergent allosteric control of the IRE1α endoribonuclease using kinase inhibitors
Abstract
Under endoplasmic reticulum stress, unfolded protein accumulation leads to activation of the endoplasmic reticulum transmembrane kinase/endoRNase (RNase) IRE1α. IRE1α oligomerizes, autophosphorylates and initiates splicing of XBP1 mRNA, thus triggering the unfolded protein response (UPR). Here we show that IRE1α's kinase-controlled RNase can be regulated in two distinct modes with kinase inhibitors: one class of ligands occupies IRE1α's kinase ATP-binding site to activate RNase-mediated XBP1 mRNA splicing even without upstream endoplasmic reticulum stress, whereas a second class can inhibit the RNase through the same ATP-binding site, even under endoplasmic reticulum stress. Thus, alternative kinase conformations stabilized by distinct classes of ATP-competitive inhibitors can cause allosteric switching of IRE1α's RNase--either on or off. As dysregulation of the UPR has been implicated in a variety of cell degenerative and neoplastic disorders, small-molecule control over IRE1α should advance efforts to understand the UPR's role in pathophysiology and to develop drugs for endoplasmic reticulum stress-related diseases.
Figures
References
-
- Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–1086. - PubMed
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
