Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Apr;3(4):291-304.
doi: 10.1007/s13238-012-2919-3. Epub 2012 May 2.

The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation

Affiliations
Review

The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation

Huan Liu et al. Protein Cell. 2012 Apr.

Abstract

Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis.

PubMed Disclaimer

References

    1. Alarcón C., Zaromytidou A.I., Xi Q., Gao S., Yu J., Fujisawa S., Barlas A., Miller A.N., Manova-Todorova K., Macias M.J., et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009;139:757–769. - PMC - PubMed
    1. Baumgartner R., Poernbacher I., Buser N., Hafen E., Stocker H. The WW domain protein Kibra acts upstream of Hippo in Drosophila. Dev Cell. 2010;18:309–316. - PubMed
    1. Benhamouche S., Curto M., Saotome I., Gladden A.B., Liu C.H., Giovannini M., McClatchey A.I. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev. 2010;24:1718–1730. - PMC - PubMed
    1. Bennett F.C., Harvey K.F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr Biol. 2006;16:2101–2110. - PubMed
    1. Bhat K.P., Salazar K.L., Balasubramaniyan V., Wani K., Heathcock L., Hollingsworth F., James J.D., Gumin J., Diefes K.L., Kim S.H., et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 2011;25:2594–2609. - PMC - PubMed

Publication types

MeSH terms

Substances