Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;8(4):e1002635.
doi: 10.1371/journal.pgen.1002635. Epub 2012 Apr 12.

Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism

Affiliations

Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism

Maria H Chahrour et al. PLoS Genet. 2012.

Abstract

Although autism has a clear genetic component, the high genetic heterogeneity of the disorder has been a challenge for the identification of causative genes. We used homozygosity analysis to identify probands from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways. Furthermore, neuronal depolarization regulated the transcription of these genes, suggesting potential activity-dependent roles in neurons. We present a multidimensional strategy for filtering whole-exome sequence data to find candidate recessive mutations in autism, which may have broader applicability to other complex, heterogeneous disorders.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Homozygosity analysis in the AGRE collection.
(A) A plot of the percent homozygosity in the genome of probands from the entire AGRE collection. All affected individuals with runs of homozygosity (ROHs) >5 cM are plotted. Offspring of first cousin marriages are expected to have 6.25% homozygosity in their genomes, while those of second cousin marriages are expected to have 1.6%. IBD: identity by descent. (B) The average sizes of the ROHs in cM are plotted for each of the 16 AGRE samples that were sequenced. The number of the ROHs is shown in each bar. Values are mean ± SEM. (C) ROHs containing candidate disease variants are shared by affected individuals and absent from unaffected individuals. Sample names are indicated on the left (Aff.Sib: affected sibling, Unaff.Sib: unaffected sibling). Homozygous SNPs are shown in red or blue and heterozygous SNPs are shown in green. ROHs are enclosed in the dotted box. The candidate autism gene in each family is shown in navy below the ROHs. All other genes in grey did not contain rare, potentially pathogenic variants. No whole genome SNP data is available for individual AU035203, but we genotyped the sample for all homozygous variants identified by the whole exome sequencing of AU035204.
Figure 2
Figure 2. A four-dimensional approach to identifying autism candidate genes.
Overview of variant filtration and prioritization of whole exome sequencing data. Results from variant validation and homozygosity analysis were combined with neuronal activity data to identify candidate autism genes from whole exome sequence. 1000G: 1000 Genomes Project, GMCC: genomic mutation consequence calculator, ROHs: runs of homozygosity.
Figure 3
Figure 3. Regulation of four candidate autism genes by neuronal activity.
qRT-PCR analysis of total RNA from depolarized mouse cortical neurons stimulated with KCl for 6 hours (the dashed line represents no KCl treatment, values are mean ± SEM from three independent experiments, each experiment was performed in triplicate, ***P<0.0001, **P<0.004, *P<0.04, t-test).

Comment in

References

    1. Autism and Developmental Disabilities Monitoring Network Surveillance Year 2006 Principal Investigators, Centers for Disease Control and Prevention (CDC) Prevalence of autism spectrum disorders - Autism and Developmental Disabilities Monitoring Network, United States, 2006. MMWR Surveill Summ. 2009;58:1–20. - PubMed
    1. Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011;15:409–416. - PMC - PubMed
    1. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, et al. Genetic Heritability and Shared Environmental Factors Among Twin Pairs With Autism. Arch Gen Psychiatry. 2011;68:1095–1102. - PMC - PubMed
    1. Geschwind DH. Advances in autism. Annu Rev Med. 2009;60:367–380. - PMC - PubMed
    1. O'Roak BJ, State MW. Autism genetics: strategies, challenges, and opportunities. Autism Res. 2008;1:4–17. - PubMed

Publication types