Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria
- PMID: 21726373
- PMCID: PMC3166429
- DOI: 10.1111/j.1364-3703.2011.00706.x
Comparative analysis of the XopD type III secretion (T3S) effector family in plant pathogenic bacteria
Abstract
XopD is a type III effector protein that is required for Xanthomonas campestris pathovar vesicatoria (Xcv) growth in tomato. It is a modular protein consisting of an N-terminal DNA-binding domain, two ethylene-responsive element binding factor-associated amphiphilic repression (EAR) transcriptional repressor motifs and a C-terminal small ubiquitin-related modifier (SUMO) protease. In tomato, XopD functions as a transcriptional repressor, resulting in the suppression of defence responses at late stages of infection. A survey of available genome sequences for phytopathogenic bacteria revealed that XopD homologues are limited to species within three genera of Proteobacteria--Xanthomonas, Acidovorax and Pseudomonas. Although the EAR motif(s) and SUMO protease domain are conserved in all XopD-like proteins, variation exists in the length and sequence identity of the N-terminal domains. Comparative analysis of the DNA sequences surrounding xopD and xopD-like genes led to revised annotation of the xopD gene. Edman degradation sequence analysis and functional complementation studies confirmed that the xopD gene from Xcv encodes a 760-amino-acid protein with a longer N-terminal domain than previously predicted. None of the XopD-like proteins studied complemented Xcv ΔxopD mutant phenotypes in tomato leaves, suggesting that the N-terminus of XopD defines functional specificity. Xcv ΔxopD strains expressing chimeric fusion proteins containing the N-terminus of XopD fused to the EAR motif(s) and SUMO protease domain of the XopD-like protein from X. campestris pathovar campestris strain B100 were fully virulent in tomato, demonstrating that the N-terminus of XopD controls specificity in tomato.
© 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.
Figures
References
-
- Almeida, N.F. , Yan, S. , Lindeberg, M. , Studholme, D.J. , Schneider, D.J. , Condon, B. , Liu, H.J. , Viana, C.J. , Warren, A. , Evans, C. , Kemen, E. , MacLean, D. , Angot, A. , Martin, G.B. , Jones, J.D. , Collmer, A. , Setubal, J.C. and Vinatzer, B.A. (2009) A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol. Plant–Microbe Interact. 22, 52–62. - PubMed
-
- Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410. - PubMed
-
- Bonas, U. , Schulte, R. , Fenselau, S. , Minsavage, G.V. , Staskawicz, B.J. and Stall, R.E. (1991) Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant–Microbe Interact. 4, 81–88.
-
- Castaneda, A. , Reddy, J.D. , El‐Yacoubi, B. and Gabriel, D.W. (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol. Plant–Microbe Interact. 18, 1306–1317. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
