Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress
- PMID: 21605081
- PMCID: PMC3744093
- DOI: 10.1042/BJ20110373
Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress
Abstract
Obesity is associated with induction of the ER (endoplasmic reticulum)-stress response signalling and insulin resistance. PTP1B (protein tyrosine phosphatase 1B) is a major regulator of adiposity and insulin sensitivity. The aim of the present study was to investigate the role of L-PTP1B (liver-specific PTP1B) in chronically HFD (high-fat diet) and pharmacologically induced (tunicamycin and thapsigargin) ER-stress response signalling in vitro and in vivo. We assessed the effects of ER-stress response induction on hepatic PTP1B expression, and consequences of hepatic-PTP1B deficiency, in cells and mouse liver, on components of ER-stress response signalling. We found that PTP1B protein and mRNA expression levels were up-regulated in response to acute and/or chronic ER stress, in vitro and in vivo. Silencing PTP1B in hepatic cell lines or mouse liver (L-PTP1B(-/-)) protected against induction of pharmacologically induced and/or obesity-induced ER stress. The HFD-induced increase in CHOP (CCAAT/enhancer-binding protein homologous protein) and BIP (binding immunoglobulin protein) mRNA levels were partially inhibited, whereas ATF4 (activated transcription factor 4), GADD34 (growth-arrest and DNA-damage-inducible protein 34), GRP94 (glucose-regulated protein 94), ERDJ4 (ER-localized DnaJ homologue) mRNAs and ATF6 protein cleavage were completely suppressed in L-PTP1B(-/-) mice relative to control littermates. L-PTP1B(-/-) mice also had increased nuclear translocation of spliced XBP-1 (X box-binding protein-1) via increased p85α binding. We demonstrate that the ER-stress response and L-PTP1B expression are interlinked in obesity- and pharmacologically induced ER stress and this may be one of the mechanisms behind improved insulin sensitivity and lower lipid accumulation in L-PTP1B(-/-) mice.
Figures
References
-
- Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007;8:519–529. - PubMed
-
- Gregor MF, Hotamisligil GS. Thematic review series: Adipocyte Biology. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J. Lipid Res. 2007;48:1905–1914. - PubMed
-
- Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell. 2000;6:1099–1108. - PubMed
-
- Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J. Biol. Chem. 2005;280:14189–14202. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
