Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Nov 15;70(22):9505-14.
doi: 10.1158/0008-5472.CAN-10-1509. Epub 2010 Nov 2.

Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation

Affiliations

Loss of thioredoxin reductase 1 renders tumors highly susceptible to pharmacologic glutathione deprivation

Pankaj Kumar Mandal et al. Cancer Res. .

Abstract

Tumor cells generate substantial amounts of reactive oxygen species (ROS), engendering the need to maintain high levels of antioxidants such as thioredoxin (Trx)- and glutathione (GSH)-dependent enzymes. Exacerbating oxidative stress by specifically inhibiting these types of ROS-scavenging enzymes has emerged as a promising chemotherapeutic strategy to kill tumor cells. However, potential redundancies among the various antioxidant systems may constrain this simple approach. Trx1 and thioredoxin reductase 1 (Txnrd1) are upregulated in numerous cancers, and Txnrd1 has been reported to be indispensable for tumorigenesis. However, we report here that genetic ablation of Txnrd1 has no apparent effect on tumor cell behavior based on similar proliferative, clonogenic, and tumorigenic potential. This finding reflects widespread redundancies between the Trx- and GSH-dependent systems based on evidence of a bypass to Txnrd1 deficiency by compensatory upregulation of GSH-metabolizing enzymes. Because the survival and growth of Txnrd1-deficient tumors were strictly dependent on a functional GSH system, Txnrd1-/- tumors were highly susceptible to experimental GSH depletion in vitro and in vivo. Thus, our findings establish for the first time that a concomitant inhibition of the two major antioxidant systems is highly effective in killing tumor, highlighting a promising strategy to combat cancer.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources