Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Jan 5;265(1):506-14.

Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins

Affiliations
  • PMID: 1967175
Free article
Comparative Study

Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins

C J Chen et al. J Biol Chem. .
Free article

Abstract

The MDR1 gene, responsible for multidrug resistance in human cells, encodes a broad specificity efflux pump (P-glycoprotein). P-glycoprotein consists of two similar halves, each half including a hydrophobic transmembrane region and a nucleotide-binding domain. On the basis of sequence homology between the N-terminal and C-terminal halves of P-glycoprotein, we have previously suggested that this gene arose by duplication of a primordial gene. We have now determined the complete intron/exon structure of the MDR1 gene by direct sequencing of cosmid clones and enzymatic amplification of genomic DNA segments. The MDR1 gene includes 28 introns, 26 of which interrupt the protein-coding sequence. Although both halves of the protein-coding sequence are composed of approximately the same number of exons, only two intron pairs, both within the nucleotide-binding domains, are located at conserved positions in the two halves of the protein. The other introns occur at different locations in the two halves of the protein and in most cases interrupt the coding sequence at different positions relative to the open reading frame. These results suggest that the P-glycoprotein arose by fusion of genes for two related but independently evolved proteins rather than by internal duplication.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources