Hydrophobic peptides: novel regulators within bacterial membrane
- PMID: 19210615
- DOI: 10.1111/j.1365-2958.2009.06626.x
Hydrophobic peptides: novel regulators within bacterial membrane
Abstract
Identification of short coding sequences is challenging, both experimentally and in silico, and functional natural peptides (< 50 amino acids) have to a large extent been overlooked in Gram-negative bacteria. Recent results have converged to highlight the role of hydrophobic peptides that form a novel class of active molecules in Escherichia coli and Salmonella enterica serovar Typhimurium. These peptides can play a regulatory role by interacting with protein partners at the inner membrane and by modulating protein partner activity or stability. Genome-wide analyses in both bacterial species have identified several conserved short open reading frames encoding a single transmembrane segment. We discuss the known and predicted membrane-associated peptides and the tools for their identification. Besides the identification of novel regulatory networks, characterization of peptides with a single transmembrane helix segment and proteins that interact with them provides a powerful opportunity to study interactions between alpha helices within biological membranes. In addition, some bioactive membrane peptides could provide a basis for engineering membrane protein antagonists.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
