Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec;56(16):1755-66.
doi: 10.1002/glia.20724.

Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes

Affiliations

Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes

Grazia Paola Nicchia et al. Glia. 2008 Dec.

Abstract

Aquaporin-4 (AQP4) is constitutively concentrated in the plasma membrane of the perivascular glial processes, and its expression is altered in certain pathological conditions associated with brain edema or altered glial migration. When astrocytes are grown in culture, they lose their characteristic star-like shape and AQP4 continuous plasma membrane localization observed in vivo. In this study, we differentiated primary astrocyte cultures with cAMP and lovastatin, both able to induce glial stellation through a reorganization of F-actin cytoskeleton, and obtained AQP4 selectively localized on the cell plasma membrane associated with an increase in the plasma membrane water transport level, but only cAMP induced an increase in AQP4 total protein expression. Phosphorylation experiments indicated that AQP4 in astrocytes is neither phosphorylated nor a substrate of PKA. Depolymerization of F-actin cytoskeleton performed by cytochalasin-D suggested that F-actin cytoskeleton plays a primary role for AQP4 plasma membrane localization and during cell adhesion. Finally, AQP4 knockdown does not compromise the ability of astrocytes to stellate in the presence of cAMP, indicating that astrocyte stellation is independent of AQP4.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources