A syngeneic variance library for functional annotation of human variation: application to BRCA2
- PMID: 18593900
- PMCID: PMC2536704
- DOI: 10.1158/0008-5472.CAN-07-6189
A syngeneic variance library for functional annotation of human variation: application to BRCA2
Abstract
The enormous scope of natural human genetic variation is now becoming defined. To accurately annotate these variants, and to identify those with clinical importance, is often difficult to assess through functional assays. We explored systematic annotation by using homologous recombination to modify a native gene in hemizygous (wt/Deltaexon) human cancer cells, generating a novel syngeneic variance library (SyVaL). We created a SyVaL of BRCA2 variants: nondeleterious, proposed deleterious, deleterious, and of uncertain significance. We found that the null states BRCA2(Deltaex11/Deltaex11) and BRCA2(Deltaex11/Y3308X) were deleterious as assessed by a loss of RAD51 focus formation on genotoxic damage and by acquisition of toxic hypersensitivity to mitomycin C and etoposide, whereas BRCA2(Deltaex11/Y3308Y), BRCA2(Deltaex11/P3292L), and BRCA2(Deltaex11/P3280H) had wild-type function. A proposed phosphorylation site at codon 3291 affecting function was confirmed by substitution of an acidic residue (glutamate, BRCA2(Deltaex11/S3291E)) for the native serine, but in contrast to a prior report, phosphorylation was dispensable (alanine, BRCA2(Deltaex11/S3291A)) for BRCA2-governed cellular phenotypes. These results show that SyVaLs offer a means to comprehensively annotate gene function, facilitating numerical and unambiguous readouts. SyVaLs may be especially useful for genes in which functional assays using exogenous expression are toxic or otherwise unreliable. They also offer a stable, distributable cellular resource for further research.
Conflict of interest statement
Figures
References
-
- Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74. - PubMed
-
- Davies AA, Masson JY, McIlwraith MJ, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7:273–82. - PubMed
-
- Esashi F, Christ N, Gannon J, et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005;434:598–604. - PubMed
-
- Wu K, Hinson SR, Ohashi A, et al. Functional evaluation and cancer risk assessment of BRCA2 unclassified variants. Cancer Res. 2005;65:417–26. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
