A probabilistic model of local sequence alignment that simplifies statistical significance estimation
- PMID: 18516236
- PMCID: PMC2396288
- DOI: 10.1371/journal.pcbi.1000069
A probabilistic model of local sequence alignment that simplifies statistical significance estimation
Abstract
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (lambda) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty ("Forward" scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores ("Viterbi" scores) are Gumbel-distributed with constant lambda = log 2, and the high scoring tail of Forward scores is exponential with the same constant lambda. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments.
Conflict of interest statement
The author has declared that no competing interests exist.
Figures













References
-
- Durbin R, Eddy SR, Krogh A, Mitchison GJ. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge, UK: Cambridge University Press; 1998. p. 356.
-
- Krogh A, Brown M, Mian IS, Sjölander K, Haussler D. Hidden Markov models in computational biology: applications to protein modeling. J Mol Biol. 1994;235:1501–1531. - PubMed
-
- Altschul SF, Boguski MS, Gish W, Wooton JC. Issues in searching molecular sequence databases. Nature Genetics. 1994;6:119–129. - PubMed
-
- Mitrophanov AY, Borodovsky M. Statistical significance in biological sequence analysis. Brief Bioinform. 2006;7:2–24. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources