Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Sep;60(9):547-53.
doi: 10.1038/ja.2007.69.

Trierixin, a novel Inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. 1. Taxonomy, fermentation, isolation and biological activities

Affiliations

Trierixin, a novel Inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. 1. Taxonomy, fermentation, isolation and biological activities

Etsu Tashiro et al. J Antibiot (Tokyo). 2007 Sep.

Abstract

In the course of screening for an inhibitor of ER stress-induced XBP1 activation, we isolated a new member of the triene-ansamycin group compound, trierixin, from a culture broth of Streptomyces sp. AC 654. Trierixin was purified by column chromatography on silica gel and by HPLC. The molecular formula of trierixin is C(37)H(52)N(2)O(8)S. Trierixin inhibited thapsigargin-induced XBP1-luciferase activation in HeLa/XBP1-luc cells and endogenous XBP1 splicing in HeLa cells with an IC(50) of 14 ng/ml and 19 ng/ml, respectively. Moreover, in the process of isolating trierixin, we isolated structurally related mycotrienin II and trienomycin A as inhibitors of ER stress-induced XBP1 activation from a culture broth of a trierixin-producing strain. This study provides the first observation that triene-ansamycins have a novel inhibitory effect against XBP1 activation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources