Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Oct 5;361(4):1022-6.
doi: 10.1016/j.bbrc.2007.07.129. Epub 2007 Jul 31.

A Sveinsson's chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ

Affiliations

A Sveinsson's chorioretinal atrophy-associated missense mutation in mouse Tead1 affects its interaction with the co-factors YAP and TAZ

Michinori Kitagawa. Biochem Biophys Res Commun. .

Abstract

Sveinsson's chorioretinal atrophy (SCRA) is an autosomal dominant eye disease characterized by bilateral chorioretinal degeneration. A missense mutation in the gene encoding the transcription factor TEAD1/TEF-1 (Y421H) is genetically linked to SCRA, but the mechanisms of pathology remain unclear. To study the molecular mechanisms underlying SCRA, a missense mutation corresponding to Y421H in human TEAD1 was introduced into mouse Tead1 (Y410H), and a functional analysis of the mutant protein was performed in RPE-J cells. The missense mutation reduced the ability of Tead1 to interact with the co-factors YAP and TAZ, but not with the co-factors Vgl-1, -2, and -3, in a mammalian two-hybrid assay. A GST pull-down assay showed that the direct interaction between Tead1 and YAP or TAZ was lost owing to the mutation. Amino acid substitutions at position 410 of Tead1 revealed the essentiality of this tyrosine residue to the interaction. The Y410H mutation also abolished the transcriptional activity of Tead1 under the co-expression of YAP or TAZ. These results suggest that SCRA pathogenesis may be due to a loss-of-function of TEAD1 affecting the regulation of its target genes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources