Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia
- PMID: 17562866
- PMCID: PMC1952129
- DOI: 10.1128/MCB.02265-06
Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia
Abstract
Physiological hypoxia extends the replicative life span of human cells in culture. Here, we report that hypoxic extension of replicative life span is associated with an increase in mitochondrial reactive oxygen species (ROS) in primary human lung fibroblasts. The generation of mitochondrial ROS is necessary for hypoxic activation of the transcription factor hypoxia-inducible factor (HIF). The hypoxic extension of replicative life span is ablated by a dominant negative HIF. HIF is sufficient to induce telomerase reverse transcriptase mRNA and telomerase activity and to extend replicative life span. Furthermore, the down-regulation of the von Hippel-Lindau tumor suppressor protein by RNA interference increases HIF activity and extends replicative life span under normoxia. These findings provide genetic evidence that hypoxia utilizes mitochondrial ROS as signaling molecules to activate HIF-dependent extension of replicative life span.
Figures
References
-
- Abe, J., M. Takahashi, M. Ishida, J. D. Lee, and B. C. Berk. 1997. c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1. J. Biol. Chem. 272:20389-20394. - PubMed
-
- Beckman, K. B., and B. N. Ames. 1998. The free radical theory of aging matures. Physiol. Rev. 78:547-581. - PubMed
-
- Bell, E. L., T. A. Klimova, J. Eisenbart, C. T. Moraes, M. Murphy, G. R. S. Budinger, and N. S. Chandel. 11 June 2007, posting date. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. doi: 10.1083/jcb.200609074v1. - DOI - PMC - PubMed
-
- Bodnar, A. G., M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu, G. B. Morin, C. B. Harley, J. W. Shay, S. Lichtsteiner, and W. E. Wright 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279:349-352. - PubMed
-
- Brunelle, J. K., E. L. Bell, N. M. Quesada, K. Vercauteren, V. Tiranti, M. Zeviani, R. C. Scarpulla, and N. S. Chandel. 2005. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1:409-414. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources