G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth
- PMID: 16282349
- PMCID: PMC1895701
- DOI: 10.1182/blood-2005-04-1612
G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth
Abstract
Granulocyte colony-stimulating factor (G-CSF) drives the production, survival, differentiation, and inflammatory functions of granulocytes. Reactive oxygen species (ROSs) provide a major thrust of the inflammatory response, though excessive ROSs may be deleterious. G-CSF stimulation showed a time- and dose-dependent increase in ROS production, correlating with activation of Lyn and Akt. Inhibition of Lyn, PI3-kinase, and Akt abrogated G-CSF-induced ROS production. This was also blocked by DPI, a specific inhibitor of NADPH oxidase. Following G-CSF stimulation, neutrophils from Lyn-/- mice produced less ROSs than wild-type littermates. G-CSF induced both serine phosphorylation and membrane translocation of p47phox, a subunit of NADPH oxidase. Because patients with a truncated G-CSF receptor have a high risk of developing acute myeloid leukemia (AML), we hypothesized that dysregulation of ROSs contributes to leukemogenesis. Cells expressing the truncated G-CSF receptor produced more ROSs than those with the full-length receptor. G-CSF-induced ROS production was enhanced in bone marrow-derived neutrophils expressing G-CSFRdelta715, a truncated receptor. The antioxidant N-acetyl-L-cysteine diminished G-CSF-induced ROS production and cell proliferation by inhibiting Akt activation. These data suggest that the G-CSF-induced Lyn-PI3K-Akt pathway drives ROS production. One beneficial effect of therapeutic targeting of Lyn-PI3K-kinase-Akt cascade is abrogating ROS production.
Figures
References
-
- Lieschke GJ, Grail D, Hodgson G, et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994;84: 1737-1746. - PubMed
-
- Liu F, Poursine-Laurent J, Link DC. The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand. Blood. 1997;90: 2522-2528. - PubMed
-
- Sattler M, Verma S, Shrikhande G, et al. The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem. 2000;275: 24273-24278. - PubMed
-
- Sattler M, Winkler T, Verma S, et al. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood. 1999;93: 2928-2935. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous
