Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar;55(6):1658-70.
doi: 10.1111/j.1365-2958.2005.04508.x.

Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ

Affiliations
Free article

Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ

Valérie F Crepin et al. Mol Microbiol. 2005 Mar.
Free article

Abstract

The type III secretion system (TTSS) is a macromolecular structure that spans the cell wall of Gram-negative bacterial pathogens, enabling delivery of virulence effector proteins directly to the membranes and cytosol of host eukaryotic cells. TTSS consists of a conserved needle complex (NC) that is composed of sets of inner and outer membranes rings connected by a periplasmic rod. Enteropathogenic Escherichia coli (EPEC) is an extracellular diarrhoeagenic pathogen that uses TTSS to induce actin polymerization and colonizes the intestinal epithelium. In EPEC, EscJ is predicted to be targeted to the periplasm, in a sec-dependent manner, and to bridge the TTSS membrane-associated rings. In this study we determined the global fold of EscJ using Nuclear Magnetic Resonance spectroscopy. We show that EscJ comprises two subdomains (D1 - amino acid residues 1-55 in the mature protein, and D2 - amino acid residues 90-170), each comprising a three-stranded beta-sheet flanked by two alpha-helices. A flexible region (residues 60-85) couples the structured regions D1 and D2. Periplasmic overexpression of EscJ(D1) and EscJ(D2) in a single escJ mutant bacterium failed to restore protein secretion activity, suggesting that the flexible linker is essential for the rod function. In contrast, periplasmic overexpression of EscJ(D1) and EscJ(D2) in the same wild-type bacterium had a dominant-negative phenotype suggesting defective assembly of the TTSS and protein translocation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources