Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation
- PMID: 15716412
- PMCID: PMC6725922
- DOI: 10.1523/JNEUROSCI.4342-04.2005
Spatial exploration-induced Arc mRNA and protein expression: evidence for selective, network-specific reactivation
Abstract
The immediate-early gene Arc is transcribed in neurons that are part of stable neural networks activated during spatial exploratory behaviors. Arc protein has been demonstrated to regulate AMPA-type glutamate receptor trafficking by recruiting endosomal pathways, suggesting a direct role in synaptic plasticity. The purpose of the present study is to examine the fidelity of Arc mRNA translation and the temporal dynamics of behaviorally induced Arc protein expression after rats explore a novel environment. These experiments reveal two waves of Arc protein expression after a single exploration session. In the initial wave, virtually all cells that express Arc mRNA in the hippocampus and parietal cortex also express Arc protein, indicating, at a cellular level, that mRNA transcription and translation are closely correlated from 30 min to 2 h in hippocampal CA and parietal neurons. A second wave of protein expression spans the interval from 8 to 24 h and is also remarkably specific to cells active in the original behavior-induced network. This second wave is detected in a subset of the original active network and displays the novel property that the proportions of Arc-positive neurons become correlated among regions at 24 h. This suggests that the second expression wave is driven by network activity, and the stabilization of circuits reflecting behavioral experience may occur in temporally discrete phases, as memories become consolidated. This is the first demonstration of network-selective translational events consequent to spatial behavior and suggests a role for immediate-early genes in circuit-specific, late-phase synaptic biology.
Figures
References
-
- Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH (1990) Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res 83: 287-300. - PubMed
-
- Bernabeu R, Bevilaqua L, Ardenghi P, Bromberg E, Schmitz P, Bianchin M, Izquierdo I, Medina JH (1997) Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc Natl Acad Sci USA 94: 7041-7046. - PMC - PubMed
-
- Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79: 59-68. - PubMed
-
- Burgess N, Jeffery KJ, O'Keefe JO (1999) Integrating hippocampal and parietal functions: a spatial point of view. In: The hippocampus and parietal foundations of spatial cognition (Burgess N, Jeffery KJ, O'Keefe JO, eds), pp 3-29. New York: Oxford UP.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources