Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec 1;64(23):8496-501.
doi: 10.1158/0008-5472.CAN-04-2254.

Role of a BCL9-related beta-catenin-binding protein, B9L, in tumorigenesis induced by aberrant activation of Wnt signaling

Affiliations

Role of a BCL9-related beta-catenin-binding protein, B9L, in tumorigenesis induced by aberrant activation of Wnt signaling

Shungo Adachi et al. Cancer Res. .

Abstract

Wnt signaling plays a crucial role in a number of developmental processes and in tumorigenesis. beta-Catenin is stabilized by Wnt signaling and associates with the TCF/LEF family of transcription factors, thereby activating transcription of Wnt target genes. Constitutive activation of beta-catenin-TCF-mediated transcription resulting from mutations in adenomatous polyposis coli (APC), beta-catenin, or Axin is believed to be a critical step in tumorigenesis among divergent types of cancers. Here we show that the transactivation potential of the beta-catenin-TCF complex is enhanced by its interaction with a BCL9-like protein, B9L, in addition to BCL9. We found that B9L is required for enhanced beta-catenin-TCF-mediated transcription in colorectal tumor cells and for beta-catenin-induced transformation of RK3E cells. Furthermore, expression of B9L was aberrantly elevated in about 43% of colorectal tumors, relative to the corresponding noncancerous tissues. These results suggest that B9L plays an important role in tumorigenesis induced by aberrant activation of Wnt signaling.

PubMed Disclaimer

Publication types

MeSH terms