Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Sep;53(5):1343-57.
doi: 10.1111/j.1365-2958.2004.04225.x.

Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy

Affiliations
Free article

Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy

Jesse D McCool et al. Mol Microbiol. 2004 Sep.
Free article

Abstract

Many recombination, DNA repair and DNA replication mutants have high basal levels of SOS expression as determined by a sulAp-lacZ reporter gene system on a population of cells. Two opposing models to explain how the SOS expression is distributed in these cells are: (i) the 'Uniform Expression Model (UEM)' where expression is evenly distributed in all cells or (ii) the 'Two Population Model (TPM)' where some cells are highly induced while others are not at all. To distinguish between these two models, a method to quantify SOS expression in individual bacterial cells was developed by fusing an SOS promoter (sulAp) to the green fluorescent protein (gfp) reporter gene and inserting it at attlambda on the Escherichia coli chromosome. It is shown that the fluorescence in sulAp-gfp cells is regulated by RecA and LexA. This system was then used to distinguish between the two models for several mutants. The patterns displayed by priA, dnaT, recG, uvrD, dam, ftsK, rnhA, polA and xerC mutants were explained best by the TPM while only lexA (def), lexA3 (ind-) and recA defective mutants were explained best by the UEM. These results are discussed in a context of how the processes of DNA replication and recombination may affect cells in a population differentially.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources