Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Aug;36(4):287-94.
doi: 10.1023/B:JOBB.0000041755.22613.8d.

Deadly conversations: nuclear-mitochondrial cross-talk

Affiliations
Review

Deadly conversations: nuclear-mitochondrial cross-talk

Valina L Dawson et al. J Bioenerg Biomembr. 2004 Aug.

Abstract

Neuronal damage following stroke or neurodegenerative diseases is thought to stem in part from overexcitation of N -methyl-D-aspartate (NMDA) receptors by glutamate. NMDA receptors triggered neurotoxicity is mediated in large part by activation of neuronal nitric oxide synthase (nNOS) and production of nitric oxide (NO). Simultaneous production of superoxide anion in mitochondria provides a permissive environment for the formation of peroxynitrite (ONOO-). Peroxynitrite damages DNA leading to strand breaks and activation of poly(ADP-ribose) polymerase-1 (PARP-1). This signal cascade plays a key role in NMDA excitotoxicity, and experimental models of stroke and Parkinson's disease. The mechanisms of PARP-1-mediated neuronal death are just being revealed. While decrements in ATP and NAD are readily observed following PARP activation, it is not yet clear whether loss of ATP and NAD contribute to the neuronal death cascade or are simply a biochemical marker for PARP-1 activation. Apoptosis-inducing factor (AIF) is normally localized to mitochondria but following PARP-1 activation, AIF translocates to the nucleus triggering chromatin condensation, DNA fragmentation and nuclear shrinkage. Additionally, phosphatidylserine is exposed and at a later time point cytochrome c is released and caspase-3 is activated. In the setting of excitotoxic neuronal death, AIF toxicity is caspase independent. These observations are consistent with reports of biochemical features of apoptosis in neuronal injury models but modest to no protection by caspase inhibitors. It is likely that AIF is the effector of the morphologic and biochemical events and is the commitment point to neuronal cell death, events that occur prior to caspase activation, thus accounting for the limited effects of caspase inhibitors. There exists significant cross talk between the nucleus and mitochondria, ultimately resulting in neuronal cell death. In exploiting this pathway for the development of new therapeutics, it will be important to block AIF translocation from the mitochondria to the nucleus without impairing important physiological functions of AIF in the mitochondria.

PubMed Disclaimer

References

    1. Proc Natl Acad Sci U S A. 1999 May 11;96(10 ):5774-9 - PubMed
    1. J Clin Invest. 2003 Jan;111(2):163-9 - PubMed
    1. J Biol Chem. 2002 Aug 16;277(33):29803-9 - PubMed
    1. Oncogene. 2000 Dec 14;19(54):6342-50 - PubMed
    1. Nat Struct Biol. 2002 Sep;9(9):680-4 - PubMed

Publication types