Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Jan;17(1):113-26.
doi: 10.1016/S0893-6080(03)00169-2.

Practical selection of SVM parameters and noise estimation for SVM regression

Affiliations
Comparative Study

Practical selection of SVM parameters and noise estimation for SVM regression

Vladimir Cherkassky et al. Neural Netw. 2004 Jan.

Abstract

We investigate practical selection of hyper-parameters for support vector machines (SVM) regression (that is, epsilon-insensitive zone and regularization parameter C). The proposed methodology advocates analytic parameter selection directly from the training data, rather than re-sampling approaches commonly used in SVM applications. In particular, we describe a new analytical prescription for setting the value of insensitive zone epsilon, as a function of training sample size. Good generalization performance of the proposed parameter selection is demonstrated empirically using several low- and high-dimensional regression problems. Further, we point out the importance of Vapnik's epsilon-insensitive loss for regression problems with finite samples. To this end, we compare generalization performance of SVM regression (using proposed selection of epsilon-values) with regression using 'least-modulus' loss (epsilon=0) and standard squared loss. These comparisons indicate superior generalization performance of SVM regression under sparse sample settings, for various types of additive noise.

PubMed Disclaimer

Publication types

LinkOut - more resources