Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 1;103(9):3503-10.
doi: 10.1182/blood-2003-07-2340. Epub 2003 Dec 11.

Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines

Affiliations
Free article

Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines

Yulia Nefedova et al. Blood. .
Free article

Abstract

The bone marrow (BM) microenvironment plays a critical role in malignant cell growth, patient survival, and response to chemotherapy in hematologic malignancies. However, mechanisms associated with this environmental influence remain unclear. In this study, we investigated the role of Notch family proteins in myeloma and other malignant lymphoid cell line growth and response to chemotherapeutic drugs. All 8 tested cell lines expressed Notch-3 and Notch-4; 7 cell lines expressed Notch-1; and 6 expressed Notch-2 proteins. Interaction with BM stroma (BMS) activated Notch signaling in tumor cells. However, activation of only Notch-1, but not Notch-2, resulted in protection of tumor cells from melphalan- and mitoxantrone-induced apoptosis. This protection was associated with up-regulation of p21(WAF/Cip) and growth inhibition of cells. Overexpression of Notch-1 in Notch-1(-) U266 myeloma cells up-regulated p21 and resulted in protection from drug-induced apoptosis. Thus, this is a first report demonstrating that Notch-1 signaling may be a primary mechanism mediating the BMS influence on hematologic malignant cell growth and survival.

PubMed Disclaimer

Publication types

MeSH terms