Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 5;93(2):105-20.
doi: 10.1016/j.jconrel.2003.06.001.

A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs

Affiliations

A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs

Volga Bulmus et al. J Control Release. .

Abstract

In this study, we have designed, synthesized and characterized a novel pH-responsive polymeric carrier for the enhanced cytoplasmic delivery of enzyme susceptible drugs, such as antisense oligonucleotides, proteins and peptides. A novel functionalized monomer, pyridyl disulfide acrylate, was synthesized and incorporated into an amphiphilic copolymer consisting of methacrylic acid and butyl acrylate, which resulted in a glutathione- and pH-sensitive, membrane-disruptive terpolymer with functional groups, that allow thiol-containing molecules to be readily conjugated. Conjugation and/or ionic complexation with oligopeptides or antisense oligonucleotides were performed and characterized. Hemolytic activity at low pHs remained high even after the conjugation/complexation with oligopeptides and asODNs. This polymer showed no toxicity, as determined with mouse 3T3 fibroblasts and human THP-1 macrophage-like cells. Uptake of the radiolabeled polymer and enhanced cytoplasmic delivery of FITC-ODN was also studied in THP-1 macrophage-like cells.

PubMed Disclaimer

MeSH terms

LinkOut - more resources