A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA
- PMID: 12810916
- PMCID: PMC1370449
- DOI: 10.1261/rna.2130503
A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA
Abstract
The 15.5-kD protein and its yeast homolog Snu13p bind U4 snRNA, U3 snoRNA, and the C/D box snoRNAs. In U4 snRNA, they associate with a helix-bulge-helix (K-turn) structure. U3 snoRNA contains two conserved pairs of boxes, C'/D and B/C, which were both expected to bind the 15.5-kD/Snu13 protein. Only binding to the B/C motif was experimentally demonstrated. Here, by chemical probing of in vitro reconstituted RNA/protein complexes, we demonstrate the independent binding of the 15.5-kD/Snu13 protein to each of the two motifs. Due to a highly reduced stem I (1 bp), the K-turn structure is not formed in the naked B/C motif. However, gel-shift experiments revealed a higher affinity of Snu13p for the B/C motif, compared to the C'/D motif. A phylogenetic analysis of U3 snoRNA, coupled with an analysis of Snu13p affinity for variant yeast C'/D and B/C motifs, and a study of the functionality of a truncated yeast U3 snoRNA carrying base substitutions in the C'/D and B/C motifs, revealed that conservation of the identities of residues 2 and 3 in the B/C K-turn is more important for Snu13p binding and U3 snoRNA function, than conservation of the identities of corresponding residues in the C'/D K-turn. This suggests that binding of Snu13p to K-turns with a very short helix I imposes sequence constraints in the bulge. Altogether, the data demonstrate the strong importance of the binding of the 15.5-kD/Snu13 protein to the C'/D and B/C motifs for both U3 snoRNP assembly and activity.
Figures
References
-
- Borovjagin, A.V. and Gerbi, S.A. 1999. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. J. Mol. Biol. 286: 1347–1363. - PubMed
-
- ———. 2000. The spacing between functional cis-elements of U3 snoRNA is critical for rRNA processing. J. Mol. Biol. 300: 57–74. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases