Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;71(2):212-22.

Neutrophil leukocyte motility requires directed water influx

Affiliations
  • PMID: 11818441

Neutrophil leukocyte motility requires directed water influx

Vesa-Matti Loitto et al. J Leukoc Biol. 2002 Feb.

Abstract

The ability of neutrophils to sense and move to sites of infection is essential for our defense against pathogens. For motility, lamellipodium extension and stabilization are prerequisites, but how cells form such membrane protrusions is still obscure. Using contrast-enhanced video microscopy and Transwell assays, we show that water-selective aquaporin channels regulate lamellipodium formation and neutrophil motility. Addition of anti-aquaporin-9 antibodies, HgCl(2), or tetraethyl ammonium inhibited the function(s) of the channels and blocked motility-related shape changes. On human neutrophils, aquaporin-9 preferentially localized to the cell edges, where N-formyl peptide receptors also accumulated, as assessed with fluorescence microscopy. To directly visualize water fluxes at cell edges, cells were loaded with high dilution-sensitive, self-quenching concentrations of fluorophore. In these cells, motile regions always displayed increased fluorescence compared with perinuclear regions. Our observations provide the first experimental support for motility models where water fluxes play a pivotal role in cell-volume increases accompanying membrane extensions.

PubMed Disclaimer

Publication types

LinkOut - more resources