Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;281(3):L556-64.
doi: 10.1152/ajplung.2001.281.3.L556.

Serine proteases increase oxidative stress in lung cells

Affiliations
Free article

Serine proteases increase oxidative stress in lung cells

K Aoshiba et al. Am J Physiol Lung Cell Mol Physiol. 2001 Sep.
Free article

Abstract

Several serine proteases are directly cytotoxic. We investigated whether the cytotoxic effects of proteases are associated with increased levels of reactive oxygen species (ROS) in cells. We found that treatment of lung fibroblasts or bronchial epithelial cells with relatively high concentrations (0.1--100 U/ml) of neutrophil elastase, trypsin, and Pronase increased ROS levels in the mitochondria and cytoplasm. The protease-induced increase in ROS was associated with oxidative cellular injury as determined by generation of 8-hydroxy-2'-deoxyguanosine and malonaldehyde plus 4-hydroxyalkenal. The protease-induced increase in ROS was not merely due to cell detachment because the proteases also caused an increase in ROS in suspended cells, which precluded attachment to the extracellular matrix. The protease-induced increase in ROS appears to contribute to cytotoxicity because cell death induced by proteases was attenuated by treatment with catalase, a decomposer of H(2)O(2), and accelerated by treatment with aminotriazole, a catalase inhibitor. These results suggest that several proteases increase oxidative stress, indicating a direct interaction between proteases and ROS in mediating cytotoxicity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources