Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun;278(6):C1108-15.
doi: 10.1152/ajpcell.2000.278.6.C1108.

Skeletal muscle function and water permeability in aquaporin-4 deficient mice

Affiliations
Free article

Skeletal muscle function and water permeability in aquaporin-4 deficient mice

B Yang et al. Am J Physiol Cell Physiol. 2000 Jun.
Free article

Abstract

It has been proposed that aquaporin-4 (AQP4), a water channel expressed at the plasmalemma of skeletal muscle cells, is important in normal muscle physiology and in the pathophysiology of Duchenne's muscular dystrophy. To test this hypothesis, muscle water permeability and function were compared in wild-type and AQP4 knockout mice. Immunofluorescence and freeze-fracture electron microscopy showed AQP4 protein expression in plasmalemma of fast-twitch skeletal muscle fibers of wild-type mice. Osmotic water permeability was measured in microdissected muscle fibers from the extensor digitorum longus (EDL) and fractionated membrane vesicles from EDL homogenates. With the use of spatial-filtering microscopy to measure osmotically induced volume changes in EDL fibers, half times (t(1/2)) for osmotic equilibration (7.5-8.5 s) were not affected by AQP4 deletion. Stopped-flow light-scattering measurements of osmotically induced volume changes in plasmalemma vesicles also showed no significant differences in water permeability. Similar water permeability, yet approximately 90% decreased AQP4 protein expression was found in EDL from mdx mice that lack dystrophin. Skeletal muscle function was measured by force generation in isolated EDL, treadmill performance time, and in vivo muscle swelling in response to water intoxication. No differences were found in EDL force generation after electrical stimulation [42 +/- 2 (wild-type) vs. 41 +/- 2 (knockout) g/s], treadmill performance time (22 vs. 26 min; 29 m/min, 13 degrees incline), or muscle swelling (2.8 vs. 2.9% increased water content at 90 min after intraperitoneal water infusion). Together these results provide evidence against a significant role of AQP4 in skeletal muscle physiology in mice.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources