Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 17;294(5):1169-79.
doi: 10.1006/jmbi.1999.3340.

The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity

Affiliations

The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity

R Brok et al. J Mol Biol. .

Abstract

The Pseudomonas secretin XcpQ forms an oligomeric complex, which is involved in the translocation of proteins across the outer membrane via the type II secretion pathway. Pseudomonas aeruginosa produces only small amounts of this complex, 50 to 100 copies per bacterium, and overexpression is lethal to these cells. However, overexpression of Pseudomonas alcaligenes XcpQ could be achieved in the P. alcaligenes mutant strain 537. Protease protection experiments with P. alcaligenes XcpQ showed that the C-terminal domain of XcpQ, which is conserved in all the different members of the secretin family, is largely resistant to proteinase K. This protease-resistant fragment is embedded in the membrane and remains a stable complex, indicating that this domain is involved in complex formation. Both the intact and the protease-protected XcpQ complex showed a tendency to form two-dimensional crystal-like structures. Electron microscopic analysis of these structures showed that the overall oligomeric rings of the intact and of the protease-resistant complex are highly similar. The central cavity of the intact XcpQ complex contains structured mass. Both the intact and the protease-protected XcpQ complex showed pore-forming activity in planar lipid bilayers, consistent with their role as a translocation channel. However, the single-channel conductances observed were not uniform. Together, these results demonstrate that the C-terminal secretin homology domain of XcpQ is the structural domain that forms the channel through which macromolecules are being transported.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources