Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Mar;26(1):47-54.
doi: 10.1002/(sici)1098-1136(199903)26:1<47::aid-glia5>3.0.co;2-5.

Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains

Affiliations

Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains

E A Nagelhus et al. Glia. 1999 Mar.

Abstract

Postembedding immunogold labeling was used to examine the subcellular distribution of the inwardly rectifying K+ channel Kir4.1 in rat retinal Müller cells and to compare this with the distribution of the water channel aquaporin-4 (AQP4). The quantitative analysis suggested that both molecules are enriched in those plasma membrane domains that face the vitreous body and blood vessels. In addition, Kir4. 1, but not AQP4, was concentrated in the basal approximately 300-400 nm of the Müller cell microvilli. These data indicate that AQP4 may mediate the water flux known to be associated with K+ siphoning in the retina. By its highly differentiated distribution of AQP4, the Müller cell may be able to direct the water flux to select extracellular compartments while protecting others (the subretinal space) from inappropriate volume changes. The identification of specialized membrane domains with high Kir4.1 expression provides a morphological correlate for the heterogeneous K+ conductance along the Müller cell surface.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources